
- •1.Классификация органических соединений
- •2.Кислотность и основность органических соединений. Теория Бренстеда-Лоури
- •3. Виды изомерии органических соединений
- •1. Изомерия углеводородной цепи (углеродного скелета).
- •2. Изомерия функциональной группы.
- •Изомерия положения:
- •4. Номенклатура органических соединений
- •5. Спирты. Характерные реакции.
- •6. Амины. Характерные реации.
- •7. Альдегиды и кетоны. Характерные реакции.
- •4. Восстановление и окисление оксосоединений.
- •8. Карбоновые кислоты. Характерные реакции.
- •9. Важнейшие гетерофункциональные соединения. Гидрокси и оксокислоты.
- •10. Гетерофункциональные производные бензола как лекарственные препараты.
- •11. Аминокислоты. Классификация.
- •12. Аминокислоты. Декарбоксилирование, дезаминирование.
- •13. Пептиды, белки. Структура белков.
- •14. Классификация углеводов.
- •15. Химические свойства моносахаридов.
- •16. Дисахариды. Структура.
- •17. Важнейшие представители гомополисахаридов. Структура.
- •18. Важнейшие представители гетерополисахаридов. Структура.
- •19. Строение нуклеозидов и нуклеотидов.
- •20. Строение нуклеиновых кислот.
18. Важнейшие представители гетерополисахаридов. Структура.
Гетерополисахариды имеют в основном животное или бактериальное происхождение. Важное значение имеют гетерополисахариды, входящие в состав соединительной ткани. Полисахариды соединительной ткани находятся в виде углевод-белковых комплексов - протеогликанов. Наиболее важные из них: хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (хрящи, стекловидное тело глаза, суставная жидкость), гепарин (печень, кровеносные сосуды). Для этих полисахаридов характерны общие черты в строении. Они имеют неразветвленную структуру и содержат гликуроновые кислоты и ацетилированные аминосахара. Например, гиалуроновая кислота состоит из дисахаридных фрагментов, включающих D-глюкуроновую кислоту и N-ацетил-D-глюкозамин, которые связан внутри биозного фрагмента β-1,3-гликозидной связью, между биозными фрагментами - β-1,4-гликозидной связью.
Как свидетельствует само их название, хондроитинсульфаты являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся либо в 4-м, либо в 6-м положении. Соответственно различают хондроитин-4-сульфат и хондроитин-6-сульфат.
Гепарин. В гепарине в состав повторяющихся дисахаридных единиц входят остатки D-глюкозамина и двух уроновых кислот — D-глюкуроновой и L-идуроновой. В количественном отношении преобладает L-идуроновая кислота. Внутри дисахаридного фрагмента осуществляется ά-(1-4)-гликозидная связь, а между дисахаридными фрагментами — ά-(1-4)-связь, если фрагмент оканчивается L-идуроновой кислотой, и β-(1-4)-связь, если D-глюкуроновой кислотой. Аминогруппа у большинства глюкозаминных остатков сульфатирована, а у некоторых из них — ацетатирована. Кроме того, сульфатные группы содержатся у ряда L-идуроновых кислот при С-2, а также глюкозаминных остатков при С-6. Остатки D-глюкуроновой кислоты не сульфатированы. Гепарин и гепаритинсульфат, подобно хондроитинсульфату, соединяются с белком через тетрасахаридный фрагмент, концевым звеном которого является D-ксилоза. Гепарин препятствует свертыванию крови, т. е. проявляет антикоагулянтные свойства.
19. Строение нуклеозидов и нуклеотидов.
Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями (урацилом, тимином, цитозином, аденином и гуанином) и рибозой или дезоксирибозой. Связь между нуклеиновым основанием и углеводным остатком называется гликозидной.
Для обозначения нуклеозидов используются однобуквенные обозначения, входящих в их состав нуклеиновых оснований. Названия нуклеозидов соответствуют названию нуклеинового основания с суффиксами идин у пиримидиновых и озин у пуриновых нуклеозидов. Например:
Цитозин + рибоза цитидин
Цитозин + дезоксирибоза дезоксицитидин
Аденин + рибоза аденозин
Аденин + дезоксирибоза дезоксиаденозин
Исключение – тимидин, а не дезокситимидин, входящий в ДНК. В РНК встречается крайне редко, и тогда название – риботимидин. Нуклеозиды сокращенно обозначают однобуквенным кодом – начальная буква их латинского названия с добавлением префикса d в случае дезоксинуклеозидов.
В природе нуклеозиды встречаются также в свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые отличия от обычных нуклеозидов в строении либо углеводной части, либо гетероциклического основания, что позволяет им выступать в качестве антиметаболитов, чем и объясняется их антибиотическая активность.
Нуклеотиды – это эфиры нуклеозидов и фосфорной кислоты (нуклеозидфосфаты). Сложноэфирную связь с фосфорной кислотой образует ОН группа в положении 5/ или 3/ моносахарида. В зависимости от природы моносахаридного остатка нуклеотиды делят на рибонуклеотиды (структурные элементы РНК) и дезоксирибонуклеотиды (структурные элементы ДНК). Названия нуклеотидов включают название нуклеозида с указанием положения в нем остатка фосфорной кислоты. Сокращенные обзначения нуклеозидов содержат обозначение нуклеозида, остатка моно-, ди- или трифосфорной кислоты, для 3/-производных указывается также положение фосфатной группы.
Нуклеотиды являются мономерными звеньями, из которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды выполняют роль коферментов и участвуют в обмене веществ.