
- •3.Особенности генома эукариот.
- •3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
- •Багульник болотный - Ledum palustre.
- •Вороний глаз - Paris guadrifolia l., Ландыш майский - Convallaria majalis l.
- •Багульник болотный - Ledum palustre.
- •Вороний глаз - Paris guadrifolia l., Ландыш майский - Convallaria majalis l.
- •3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
- •79.Роль регуляторных белков в регуляции генной активности (репрессоры, активаторы).
- •Багульник болотный - Ledum palustre.
- •Вороний глаз - Paris guadrifolia l., Ландыш майский - Convallaria majalis l.
- •82.Изменение структурной организации хромосом. Хромосомные мутации.
- •Багульник болотный - Ledum palustre.
- •Вороний глаз - Paris guadrifolia l., Ландыш майский - Convallaria majalis l.
Багульник болотный - Ledum palustre.
Небольшой (до 1.5 см высоты) вечнозеленый кустарник, принадлежащий к семейству (Ericaceae).
Листья линейно-продолговатые или линейные. Цветки с 5-лепестковыми белыми венчиками, в зонтиковидных соцветиях.
Растет на торфяниках, в сырых хвойных лесах, на болотах почти повсеместно.
В надземных органах, особенно в период цветения, содержится эфирное масло с главной составной частью – багульниковой камфарой (ледолом, ледум-камфарой), местно сильно раздражающей, а резорбтивно сначала возбуждающей центральную нервную систему, а затем парализурующей. Кроме того, в багульнике содержатся дубильные вещества, гликозиды – арбутин и эриколин.
Случаи отравления детей отмечаются при длительном пребывании около цветущих экземпляров, иногда во время экскурсии в зарослях багульника.
Симптомы отравления - головные боли, тошнота, сильное возбуждение ЦНС с последующим угнетением, может даже наступить паралич дыхательного центра.
Вороний глаз - Paris guadrifolia l., Ландыш майский - Convallaria majalis l.
, Лютик едкий - Ranunculus acer L.
Билет 57
В1Образоваине и роль рибосом в клетке.
Рибосомы — цитоплазматические органеллы, на которых происходит синтез белка. Рибосомы могут функционировать только в комплексе с двумя другими типами РНК — транспортной РНК, доставляющей аминокислоты к строящейся молекуле белка, и матричной РНК, служащей источником информации, необходимой для сборки заданной последовательности аминокислот. Таким образом, рибосому можно сравнить с мастерской по производству белковых молекул.
Образование рибосом в ядрышках. Гены, отвечающие за синтез рибосомной РНК, располагаются в пяти парах хромосом и представлены в виде множества копий, что позволяет одновременно синтезировать большое количество рибосомной РНК, необходимой для реализации клеточных функций.
Сформировавшиеся рибосомы накапливаются в ядрышках— специализированных структурах ядра, связанных с хромосомами. Если клетка синтезирует много белка, в ней образуется большое количество рибосомной РНК, поэтому ядрышки в этой клетке крупные. Напротив, в клетках, синтезирующих мало белка, ядрышки бывают даже не видны. Рибосомная РНК в ядрышках связывается с рибосомными белками с образованием глобулярных частиц, представляющих собой отдельные субъединицы рибосомы. Эти субъединицы отделяются от ядрышка, выходят из ядра через поры ядерной мембраны и распределяются почти по всей цитоплазме. Попав в цитоплазму, субъединицы собираются в зрелую функционирующую рибосому. Зрелых рибосом в ядре нет, поэтому синтез белка осуществляется только в цитоплазме клетки.
Роль рибосом: служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией
В2Геномные мутации. Болезни, связанные с нарушением количества половых хромосом.
Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии - кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не 2, как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия - следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ - мутагенов .
Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия , триплоидия и анеуплоидия . При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам , полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.
синдром Шерешевского-Тернера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);
полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;
полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;
синдром Кляйнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.
триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.
Транслокации — обменные перестройки между негомологичными хромосомами.
Делеции — потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).
Инверсии — повороты участка хромосомы на 180 градусов.
Дупликации — удвоения участка хромосомы.
Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.
Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.
Спиноцеребеллярная атаксия — Некоторые типы этой болезни, обуславливается увеличением тринуклеотидных GAG повторов в генах, распологающихся в хромосома
В3 Растения, поражающие преимущественно сердечно-сосудистые, нервные центры и сердце. Клинически это выражается сначала замедлением, затем учащением сердечных сокращений. При отравлениях (наперстянкой, ландышем, вороньим глазом, будрой плющевидной) у животных могут появиться понос и другие заболевания.
Билет 58
В1:Морфология ядерных структур.
Приведенный в главе 2 краткий обзор основных процессов, связанных с синтезом белка, в принципе одинаковых у всех форм живого, указывает на особое значение клеточного ядра. Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка. В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация и разъединение (сегрегация) молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и количественном смысле объемы генетической информации. В ядре эукариот происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток. Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственного аппарата белкового синтеза. Это не только синтез, транскрипция, на молекулах ДНК разных информационных РНК, но также транскрипция всех видов трансферных РНК и рибосомных РНК. В ядрах эукариотических клеток происходит «созревание» (процессинг, сплайсинг) первичных транскриптов. В ядре эукариот происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал воспроизводится и функционирует. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом. Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке ли к грубым его нарушениям. Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков - основных функционеров в жизнедеятельности клетки. Однако, что необходимо еще раз подчеркнуть, что функционирование ядра как системы хранения и реализации генетической информации сопряжено, неразрывно связано, с другими функциональными системами клетки, которые обеспечивают работу ядра специальными белками, потоком предшественников, энергией и пр. |
В2.Хромосомные мутации у человека.Хромосомными болезнями (хромосомными синдромами) называются комплексы множественных врожденных пороков развития, вызываемых числовыми (геномные мутации) или структурными (хромосомные аберрации) изменениями хромосом, видимыми в световой микроскоп.
Хромосомные аберрации и изменения количества хромосом, как и генные мутации, могут возникать на разных этапах развития организма. Если они возникают в гаметах родителей, то аномалия будет наблюдаться во всех клетках развивающегося организма (полный мутант). Если аномалия возникает в процессе эмбрионального развития при дроблении зиготы, кариотип плода будет мозаичным. Мозаичные организмы могут содержать несколько (2, 3, 4 и более) клеточных клонов с различными кари-отипами. Это явление может сопровождаться мозаицизмом во всех либо в отдельных органах и системах. При незначительном количестве аномальных клеток фенотипические проявления могут не обнаруживаться.
Этиологическими факторами хромосомной патологии являются все виды хромосомных мутаций (хромосомные аберрации) и некоторые геномные мутации (изменения числа хромосом). У человека встречаются только 3 типа геномных мутаций: тетра-плоидия, триплоидия и анеуплоидия. Из всех вариантов анеу-плоидий встречаются только трисомии по аутосомам, полисо-мии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий - только моносомия X.
У человека обнаружены все типы хромосомных мутаций: де-леции, дупликации, инверсии и транслокации. Делеция (нехватка участка) в одной из гомологичных хромосом означает частичную моносомию по этому участку, а дупликация (удвоение участка) - частичную трисомию.
Если транслокация (перенос части хромосомы с одной на другую) является реципрокной (взаимной) без потери участков вовлеченных в нее хромосом, то она называется сбалансированной. Она, как и инверсия (поворот участка хромосомы на 180°), не проявляется у носителя фенотипически, так как при этом сохраняется баланс генов. Однако в процессе кросинговера у носителей сбалансированных транслокаций и инверсий могут образовываться несбалансированные гаметы, то есть гаметы с частичной дисомией, или с частичной нулисомией, или с обеими аномалиями в разных участках. В норме каждая гамета моносомна (гаплоидный набор хромосом). При потере двумя акро-центрическими хромосомами коротких плеч и соединении их центромерами может образовываться одна метацентрическая хромосома. Такие транслокации называются робертсоновскими. При концевых делециях обоих плеч хромосомы (делеции тело-меров) образуется кольцевая хромосома. У индивида, унаследовавшего такие измененные хромосомы от одного из родителей, будет частичная моносомия по одному или двум концевым участкам хромосомы. Иногда может происходить поперечный, а не продольный, как обычно, разрыв хроматид в области центромер. В этом случае образуются изохромосомы, представляющие собой зеркальное отображение двух одинаковых плеч (длинных или коротких). Наличие у индивида изохромосом проявляется фенотипически, так как имеют место одновременно и частичная моносомия (по отсутствующему плечу), и частичная трисомия (по присутствующему плечу).
Хромосомные болезни у новорожденных детей встречаются с частотой примерно 2,4 случая на 1000 родившихся. Большинство хромосомных аномалий (полиплоидии, гаплоидии, трисомии по крупным хромосомам, моносомий) несовместимы с жизнью - эмбрионы и плоды элиминируются из организма матери в основном в ранние сроки беременности.
Хромосомные аномалии возникают и в соматических клетках с частотой около 2%. В норме такие клетки элиминируются иммунной системой, если они проявляют себя чужеродно. Однако в некоторых случаях (активация онкогенов) хромосомные аномалии могут быть причиной злокачественного роста. Например, транслокация между 9-й и 22-й хромосомами вызывает миелолейкоз.
Патогенез хромосомных болезней еще не ясен. Специфические эффекты связаны с изменением числа структурных генов, кодирующих синтез специфических белков (увеличение при три-сомиях и уменьшение при моносомиях). Полуспецифические эффекты при хромосомных болезнях могут быть обусловлены изменением числа генов, представленных и в норме многочисленными копиями (гены тРНК, рРНК, гистоновых и рибосом-ных белков и т. п.). Неспецифические эффекты хромосомных аномалий связывают с содержанием гетерохроматина, играющего важную роль в делении клеток, их росте и других физиологических процессах.
Общим для всех форм хромосомных болезней является множественность поражения. Это черепно-лицевые поражения, врожденные пороки развития систем органов, замедленные внутриутробные и постнатальные рост и развитие, отставание в психическом развитии, нарушения функций нервной, иммунной и эндокринной систем.
Фенотипические проявления хромосомных мутаций зависят от следующих главных факторов: 1) особенностей вовлеченной в аномалию хромосомы (специфический набор генов); 2) типа аномалии (трисомия, моносомия, полная, частичная); 3) размера недостающего (при частичной моносомии) или избыточного (при частичной трисомии) генетического материала; 4) степени мозаичности организма по аберрантным клеткам; 5) генотипа организма; 6) условий среды.
В настоящее время выяснилось, что при хромосомных мутациях наиболее специфичные для того или иного синдрома проявления обусловлены изменениями небольших участков хромосом. Так, специфические симптомы болезни Дауна обнаруживаются при трисомии небольшого сегмента длинного плеча 21-й хромосомы (21q22.1), синдрома кошачьего крика - при делеции средней части короткого плеча 5-й хромосомы (5р15), синдрома Эдвардса - при трисомии сегмента длинного плеча хромосомы
Окончательный диагноз хромосомных болезней устанавливается цитогенетическими методами.
Окончательный диагноз хромосомных болезней устанавливается цитогенетическими методами.
В3 Белена черная - Hyoscyamus niger L.
Типичное двухлетнее растение, относится к семейству пасленовых (Solanaceae). Растет на пустырях, выгонах, вдоль дорог, на полях, на заброшенных пашнях. По своим биологическим свойствам относится к зимним формам. В первый год посева образует только прикорневую розетку листьев, а на второй год цветоносный стебель. Растение издает специфический для белены неприятный запах. Все оно покрыто мелкими клейкими волосками, имеющие серовато-зеленый оттенок. Стебель у основания простой, а к середине разветвляется. Корень вертикальный, удлиненный, слегка ветвистый.
Листья очередные, удлиненные, овальные, по краям выемчато-зубчатые, мягкие, клейкие, покрыты волосками.
Нижние листья черешковые, а верхние (стеблевые) – сидячие. Цветки белены черные, довольно крупные, расположены на верхушке облиственного стебля, образует извилистое соцветие, которое по мере цветения удлиняется, достигает до 50 см. Плод – двухгнездная коробочка с крышечкой, в которой может быть до 500 семян. Семена буро-серые, мелкоячеистые, внешне они сходны с семенами мака. Цветение белены – с середины июня до конца августа.
Во всех органах содержатся алкалоиды группы тропана: гиосциамин, атропин, скополамин. Суммарное содержание алкалоидов в период массового цветения составляет: в листьях – 0,064%, в цветках – 0,049%, в семенах – 0,060%.
Случаи отравления детей происходят главным образом при поедании семян, которые принимаются за семена мака, реже корней и листьев. Не исключена возможность отравления мясом цыплят и молоком коз, которые могут поедать семена или листья белены и отравляться ими сами.
Алкалоиды группы атропина быстро всасываются, и первые признаки отравления отмечаются уже через 15-20 минут. Клиническая картина отравления ядовитыми растениями семейства, в общем, сходны. Прежде всего, наступает особенно характерный признак отравления – расширение зрачков, блеск глаз, сухость кожи, хриплость голоса, тошнота, рвота, понос, бред, галлюцинация. В последующем возбуждение сменяется слабостью, ослаблением сердечной деятельности, может наступить паралич дыхательного центра. Своевременно принятые меры лечения приводят к выздоровлению, уже через 2-4 дня.
4, печеночный сосальщик
Билет 59
В1Роль ядерных структур в жизнедеятельности клетки
Приведенный в главе 2 краткий обзор основных процессов, связанных с синтезом белка, в принципе одинаковых у всех форм живого, указывает на особое значение клеточного ядра. Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка.
В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация и разъединение (сегрегация) молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и количественном смысле объемы генетической информации. В ядре эукариот происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.
Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственного аппарата белкового синтеза. Это не только синтез, транскрипция, на молекулах ДНК разных информационных РНК, но также транскрипция всех видов трансферных РНК и рибосомных РНК. В ядрах эукариотических клеток происходит «созревание» (процессинг, сплайсинг) первичных транскриптов. В ядре эукариот происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал воспроизводится и функционирует. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом. Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке ли к грубым его нарушениям.
Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков - основных функционеров в жизнедеятельности клетки.
Однако, что необходимо еще раз подчеркнуть, что функционирование ядра как системы хранения и реализации генетической информации сопряжено, неразрывно связано, с другими функциональными системами клетки, которые обеспечивают работу ядра специальными белками, потоком предшественников, энергией и пр.
В2. Геномные мутации у человека и их последствия. Болезни обмена веществ.
Характеристика наиболее частых трисомий
Характеристика |
Трисомия 21 |
Трисомия 18 |
Трисомия 13 |
Эпоним |
Синдром Дауна |
Синдром Эдварда |
Синдром Патау |
Частота возникновения |
1:800 |
1:8000 |
1:15000 |
Тонус мышц |
Гипотония |
Гипертония |
Гипо- или гипертония |
Череп/головной мозг |
Умеренная микроцефалия, плоский затылок, три родничка |
Микроцефалия, выступающий затылок |
Микроцефалия, скошенный затылок, дефекты кожи в области свода черепа и в области затылка |
Глаза |
Раскосые глаза, складки эпиканта, пятнистая радужная оболочка (пятна Брашфильда) |
Узкая глазная щель, помутнение роговицы |
Микрофтальмия, гипотелоризм, колобома радужной оболочки, дисплазия сетчатки |
Уши |
Низко посажены, дополнительные складки на верхнем завитке |
Низко посажены, пороки развития |
Низко посажены, пороки развития |
Лицо |
Выпадающий язык, большиещеки, плоское переносье |
Маленький рот, микрогнатия |
Расщепление губы и нёба |
Скелет |
Клинодактилия мизинца, большоерасстояние между первым и вторым пальцем ноги, избыточное количество кожина задней поверхности шеи, малый рост |
Сжатие кистей рук в кулак, отсутствие дистальной складки на мизинце, гипоплазия ногтей, малый рост,тонкие ребра |
Зад неаксиальная полидактилия, плоские ногти, сжатие кистей рук в кулак |
Пороки сердца |
40% |
60% |
80% |
Выживаемость |
Высокая |
90% погибают на 1-м году жизни |
80% погибают на 1-м году жизни |
Другие признаки |
|
Изогнутая стопа, поликистоз почек, дерматоглифика - дуги |
Пороки развития половых органов, поликистоз почек, увеличение выступов на ядрах нейтрофилов |
В3---
Билет 60
В1Структура ядрышка. Ядрышко - источник рибосом. Строение рибосом. Амплификация ядрышек.
Внутри интерфазных ядер как при витальных наблюдениях, так и на фиксированных и окрашенных препаратах видны мелкие, обычно шаровидные тельца - ядрышки. В живых клетках они выделяются на фоне диффузной организации хроматина. Ядрышки являются наиболее плотными структурами в клетке. Ядрышки обнаруживаются практически во всех ядрах эукариотических клеток. Это говорит об обязательном присутствии этого компонента в клеточном ядре.
В клеточном цикле ядрышко присутствует в течение всей интерфазы: в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает, и отсутствует в мета- и анафазе, и вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.
Ядрышки представлялись как структурное выражение хромосомной активности. Ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным красителям, из-за кислой природы РНК. По данным цитохимических и биохимических исследований основным компонентом ядрышка является белок: на его долю приходится до 70-80% от сухого веса. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены были нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).
Рибосома представляет собой элементарную клеточную машину синтеза любых белков клетки. Все они построены в клетке одинаково, имеют одинаковую молекулярную композицию, выполняют одинаковую функцию - синтез белка - поэтому их можно так же считать клеточными органоидами. В отличие от других органоидов цитоплазмы (пластид, митохондрий, клеточного центра, мембранной вакуолярной системы и др.) они представлены в клетке огромным числом: за клеточный цикл их образуется 1 х 107 штук. Поэтому основная масса клеточной РНК представляет собой именно рибосомную РНК. РНК рибосом относительно стабильна, рибосомы могут существовать в клетках культуры ткани в течение нескольких клеточных циклов. В печеночных клетках время полужизни рибосом составляет 50-120 часов.
Рибосомы - это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК, Рибосомы прокариот и эукариот по своим размерам и молекулярным характеристикам отличаются, хотя и обладают общими принципами организации и функционирования. К настоящему времени методом рентгеноструктурного анализа высокого разрешения полностью расшифрована структура рибосом.
Амплифицированные ядрышки - гены рРНК мб избыточно реплицированы. При этом дополнительная репликация генов рРНК происходит в целях обеспечения продукции большого количества рибосом. В результате такого сверхсинтеза генов рРНК их копии могут становиться свободными, экстрахромосомными. Эти внехромосомные копии генов рРНК могут функционировать независимо, в результате чего возникает масса свободных дополнительных ядрышек, но уже не связанных структурно с ядрышкообразующими хромосомами. Это явление получило название амплификации генов рРНК. подробно изучено на растущих ооцитах амфибий. У X. laevis амплификация рДНК, происходит в профазеI. В этом случае количество амплифицированной рДНК (или генов рРНК) становится в 3000 раз больше того, что приходится на гаплоидное количество рДНК, и соответствует 1,5х106 генов рРНК. Эти сверхчисленные внехромосомные копии и образуют сотни дополнительных ядрышек в растущих ооцитах. В среднем же на одно дополнительное ядрышко приходится несколько сот или тысяч генов рРНК. Амплифицированные ядрышки встречаются также в ооцитах насекомых. У окаймленного плавунца в ооцитах обнаружено 3х106 экстрахромосомных копий генов рРНК. После периода созревания ооцита при его двух последовательных делениях дополнит ядрышки в состав митотических хромосом не входят, они отделяются от новых ядер и деградируют. У Tetrachymena pyriformis в гаплоидном геноме микронуклеуса единственный ген рРНК. В макронуклеусе ~200 копий. У дрожжей экстрахромосомные копии генов рРНК - циклические ДНК l~3 мкм, сод один ген рРНК.
В2.Роль ферментов в клеточном метаболизме. Энзимопатии.
Метаболи́зм (от греч.μεταβολή — «превращение, изменение»), или обмен веществ — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.
Белки являются линейными биополимерами и состоят из остатков аминокислот, соединённых пептидными связями. Некоторые белки являются ферментами и катализируют химические реакции. Другие белки выполняют структурную или механическую функцию (например, образуют цитоскелет).[6] Белки также играют важную роль в передаче сигнала в клетках, иммунных реакциях, агрегации клеток, активном транспорте через мембраны и регуляции клеточного цикла.[7]
Липиды
Липиды входят в состав биологических мембран, например, плазматических мембран, являются компонентами коферментов и источниками энергии.[7] Липиды являются гидрофобными или амфифильными биологическими молекулами, растворимыми в органических растворителях таких, как бензол или хлороформ.[8]Жиры — большая группа соединений, в состав которых входят жирные кислоты и глицерин. Молекула трёхатомного спирта глицерина, образующая три сложные эфирные связи с тремя молекулами жирных кислот, называется триглицеридом.[9] Наряду с остатками жирных кислот, в состав сложных липидов может входить, например, сфингозин (сфинголипиды), гидрофильные группы фосфатов (в фосфолипидах). Стероиды, например холестерол, представляют собой ещё один большой класс липидов.[10]
Углеводы
Сахара могут существовать в кольцевой или линейной форме в виде альдегидов или кетонов, имеют несколько гидроксильных групп. Углеводы являются наиболее распространёнными биологическими молекулами. Углеводы выполняют следующие функции, например, хранение и транспортировка энергии (крахмал, гликоген), структурная (целлюлоза растений, хитин у животных).[7] Наиболее распространенными мономерами сахаров являются гексозы — глюкоза, фруктоза и галактоза. Моносахариды входят в состав более сложных линейных или разветвленных полисахаридов.[11]
Нуклеотиды
Полимерные молекулы ДНК и РНК представляют собой длинные неразветвленные цепочки нуклеотидов. Нуклеиновые кислоты выполняют функцию хранения и реализации генетической информации, которые осуществляются в ходе процессов репликации,транскрипции, трансляции, и биосинтеза белка.[7] Информация, закодированная в нуклеиновых кислотах, защищается от изменений системами репарации и мультиплицируется при помощи репликации ДНК.
Некоторые вирусы имеют РНК-содержащий геном. Например, вирус иммунодефицита человека использует обратную транскрипцию для создания матрицы ДНК из собственного РНК-содержащего генома.[12] Некоторые молекулы РНК обладают каталитическими свойствами (рибозимы) и входят в состав сплайсосом и рибосом.
Нуклеозиды — продукты присоединения азотистых оснований к сахару рибозе. Примерами азотистых оснований являются гетероциклические азотсодержащие соединения — производные пуринов и пиримидинов. Некоторые нуклеотиды также выступают в качестве коферментов в реакциях переноса функциональных групп.[13]
В3Дизентерийная амёба. Особенности строения, цикла развития, пути распространения, патогенное действие. Методы лабораторной диагностики.
Дизентерийная амёба (лат. Entamoeba histolytica) — вид паразитических протозоа класса саркодовые. Вызывает тяжёлое заболевание — амебиаз (амёбную дизентерию, амёбный колит). Вид впервые описан в 1875 году русским ученым Ф. А. Лешем[1].
Размером дизентерийная амёба мельче обыкновенной амёбы (Amoeba proteus), подвижна. Эктоплазма чётко отграничена от эндоплазмы, псевдоподии короткие и широкие.
Заражение
Заражение наступает при попадании цист в верхний отдел толстого кишечника (слепая и восходящая ободочная кишка). Здесь цисты превращаются в просветные формы и внедряются в ткань кишки (тканевая форма), что сопровождается воспалением и формированием язв.
Просветная форма
Просветная форма дизентерийной амёбы (лат. forma minuta) имеет размер около 20 мкм. Находится в верхнем отделе толстого кишечника. Движется с помощью псевдоподий. Ядро сферическое, 3-5 мкм в поперечнике, хроматин расположен под ядерной оболочкой в виде небольших глыбок; в центре ядра небольшая кариосома.
Тканевая форма
При внедрении просветной формы амёбы в ткани образуется тканевая форма (лат. forma magna) размером 20-60 мкм. В отличие от просветной формы не содержит в цитоплазме никаких включений. В этой стадии амёба размножается в стенке толстой кишки, образуя язвы. Язвенное поражение толстого кишечника сопровождается выделением слизи, гноя и крови.
Большая вегетативная форма
Просветные и тканевые формы амёбы, попавшие в просвет кишки из язв, увеличиваются в размере до 30 мкм и больше и приобретают способность фагоцитировать эритроциты. Эта форма называется большой вегетативной, или эритрофагом.
Иногда амёбы из кишечника по кровеносным сосудам проникают в другие органы (прежде всего печень), формируя там вторичные очаги — абсцессы (внекишечный амёбиаз).
При затихании острой фазы болезни большая вегетативная форма уменьшается в размерах, переходит в просветную форму, которая инцистируется в кишечнике. Выброшенная при дефекации во внешнюю среду, она погибает в течение 15-20 минут.
Цисты образуются при сгущении фекалий в толстой кишке. Просветная форма окружается оболочкой и превращается в шаровидную цисту (размер около 12 мкм) с 4 ядрами, не отличающимися по строению от ядра вегетативной формы. Незрелые цисты содержат 1-2 или 3 ядра. Имеют вакуоль с гликогеном. Часть цист хроматоидные тела.
С фекалиями цисты выбрасываются во внешнюю среду и при попадании в желудочно-кишечный тракт человека после метацистной стадии развития (деления на 8 дочерних амёб) образуют просветные формы.
Цисты могут сохранять жизнеспособность в воде и влажной почве более месяца
БИЛЕТ 61
В1 Ядро-система хранения, воспроизведение и реализации генетического материала.
Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.
Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.
Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.
Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования
В2.Человек как специфический объект генетического анализа. Медико-генетическое консультирование и прогнозирование.
В настоящее время уже не требует доказательств утверждение, что практически
все реакции организма (нормальные и патологические) определяются
индивидуальным генотипическим фоном. Именно это – уникальность набора генов у
каждого человека – определяет широкое варьирование физиологических реакций в
группе людей в ответ на воздействие одного и того же фактора и может быть в
одной из причин клинического полиморфизма заболевания. Вместе с этим
многочисленными исследованиями показано, что для большинства заболеваний
генетические факторы выступают не столько в роли таких «статистов», сколько
являются этиологически значимыми, однако определяющими развитие
патологического действия лишь тогда, когда они действуют однонаправлено с
определенной совокупностью экзогенных, внешнесредовых факторов. Подобная
трактовка обосновывает взгляд на многие заболевания как на болезни с
наследственным предрасположением, или мультифакториальные заболевания,
являющиеся, таким образом, эффектом совместного действия генетических и
средовых факторов предрасположения.
По данным ВОЗ, болезни с наследственным предрасположением составляют более
90% в общем спектре патологии человека, и к их числу могут быть отнесены
практически все заболевания, за исключением «чисто» наследственных аномалий,
вызванных генными и хромосомными мутациями, а также травматических и
инфекционных болезней, хотя и в последнем случае выраженность реакций
организма в ответ на воздействие бактерий и вирусов в определенной мере
зависит от генотипа.
Мультифакториальные заболевания в настоящее время являются самой частой
причиной обращения в Медико-генетическую консультацию. Цель таких обращений
обычно заключается в желании консультирующихся узнать о прогнозе потомства
или прогнозе здоровья уже родившегося ребенка или взрослого.
В настоящее время в медицинской кибернетики накоплено большое число алгоритм
и программ, реализующих тот или иной метод распознавания образов, итогом
которых является построение правил принятия дифференциально-диагностических
решений. Вычисли- тельные метода диагностики заболеваний и прогнозирования их
исходов все шире находят применение в медицинской практике.
Одним из самых распространенных и достаточно широко апробированных
математических немашинных методов вычислительной диагностики, лежащих в
основе разработки диагностических таблиц, является алгоритм неоднородной
последовательной статистической процедуры распознавания (НПСП), вытекающей из
метода Байеса и позволяющей осуществлять выбор одной из двух конкурирующих
диагностических гипотез при заранее намеченном уровне надежности. Эта
вычислительная процедура, основанная на применении так называемого
последовательного анализа Вальда, подробно изложена в монографии Е.В.
Гублера, в связи с чем ее освещение в рамках настоящего сообщения оказалось
нецелесообразным. Несмотря на то что разработка и проверка диагностических
таблиц требуют длительного анализа, правомерность их применения в различных
областях медицины показана целым рядом авторов. Будучи крайне простыми и
удобными в употреблении, диагностические таблицы являются весьма надежными,
т.е. обеспечивают минимальную вероятность ошибочного результата в
распознавании дифференцируемых патологических состояний. Вместе с тем с точки
зрения поставленной задачи представляет интерес возможность использования
табличного метода для прогнозирования развития заболевания.
Материалы и методы
Выбор язвенной болезни как модели для разработки программы по
прогнозированию мультифакториального заболевания был обусловлен, в первую
очередь, тем, что, как свидетельствовали полученные ранее данные, язвенная
болезнь является в целом мультифакториальным заболеванием. Вместе с тем было
отмечено, что язвенная болезнь – неоднородное заболевание, в пределах
которого с генетической точки зрения возможно выделение язвенной болезни
желудка и возрастных вариантов язвенной болезни 12-перстной кишки. По этой
причине оказалось нецелесообразным осуществлять исследование не на язвенной
болезни в целом, а на одной из ее форм – дуоденальной язве в силу того, в
частности, что эта последняя является более генетически отягощенным и более
распространенным заболеванием по сравнению с язвой желудка. Выбор одной из
форм, а не всего заболевания в целом при наличии его генетической
гетерогенности является необходимым условием подхода к отбору материала при
постановке задачи прогнозирования мультифакториального заболевания.
Методами исследования на предварительном этапе были: клинико –
генеалогический метод и лабораторные биохимические методы по определению
среди обследуемых лиц перечисленных выше генетических маркеров.
Обработка и оценка диагностической информации включенных в анализ признаков
для разработки таблицы по идентификации лиц с наличием комплекса признаков,
отражающего наследственное предрасположение к дуоденальной язве, на основном
этапе исследования проводились посредством неоднородной последовательной
статистической процедуры.
В3.Пути происхождения групп паразитов.
Условия жизни паразита внутри тела своего хозяина резко отличаются от свободного существования во внешней среде. Эндопаразиту не приходится отыскивать себе пищу, у него нет необходимости в таких органах чувств, как глаза.
Приспособление паразита к таким специальным условиям жизни неизбежно отражается на его организации и сводится к двум процесса: 1) к исчезновению тех органов, которые не требуются в новых условиях существования; 2) к возникновению, развитию или преобразованию органов, работа которых связана с особенностями жизни или питания на поверхности тела или внутри организма.
Вся совокупность изменений организации паразитов сводится к упрощению строения и нередко к изменению внешнего вида.
Паразитизм как явление живой природы возник у свободноживущих организмов в результате различных форм симбиоза и хищничества.
Различают несколько категорий симбиоза:
1) мутуализм - такая форма сожительства, при которой оба партнера приносят друг другу какую либо пользу (лишайники - сожительство водорослей и грибов);
2) синойкия - сожительство, при котором один партнер использует другого в качестве временного убежища (рыба-горнак и двустворчатый моллюск беззубка);
3) коменсализм - такая категория сожительства, при которой один вид животного использует другого для питания остатками пищи другого вида (рыба-прилипала и акула);
4) паразитизм.
Допускается, что паразитизм появился вскоре после возникновения жизни.
В процессе эволюции пары сожителей могут видоизменяться так, что один партнер начинает как-либо вредить другому. В итоге симбиоз переходит в паразитизм (один из симбиоза становится паразитом, другой - хозяином паразита).
Другой путь возникновения паразитизма может быть связан с приспособлением мелких организмов к повторному питанию за счет живого организма хозяина, которому при этом наносится ущерб.
Наконец, часть паразитов развилась благодаря способности их предков некоторое время жить в каких-либо хозяевах на положении ложных паразитов. Возникновение паразитизма шло по-разному у экто- и эндопаразитов.
Эктопаразитизм формировался прежде всего у свободноживущих хищных клещей, насекомых и других животных за счет удлинения сроков питания и времени пребывания на хозяине. Большую роль в эволюции эктопаразитов сыграли переход от полифагии к монофагии и специализации питания, в частности, питание кровью (клещи, комары, москиты, вши, кровососущие мухи).
Эндопаразитизм, в частности, кишечный как наиболее распространенный, формировался в результате случайного заноса цист простейших и яиц гельминтов в желудчно-кишечный тракт животного или человека. В результате случайных контактов у паразитов вырабатывались такие особенности, которые способствовали установлению паразитических отношений.
Эндопаразитизм мог возникнуть также в результате изменения инстинкта откладки яиц не на гниющий органический материал, а на раневую поверхность или в полости тела человека, сообщающиеся с внешней средой (вольфартова муха).
Кровепаразитизм рассматривается как вторичное явление, явившееся следствием первичного кишечного паразитизма. При этом считают, что современные кровепаразиты позвоночных (например, плазмодии) были кишечными паразитами беспозвоночных, а с переходом хозяев к гематофагии приспособились к жизни в кровяном русле позвоночных, сохранив при этом связь и с беспозвоночными.
У одноклеточных в процессе эволюции сформировались органоиды передвижения (у трипаносом); для проникновения в цитоплазму клетки хозяина - коноид. Многоклеточные организмы в процессе адаптации к паразитизму потеряли ряд морфологических структур. Например, у цестод нет кишечника, слабо выражен мышечный слой. Наряду с этим возникли и адаптации прогрессивного характера: мощные органы фиксации (присоски, ботрии, крючья), большая плодовитость, быстрый темп роста, роль кутикулы как защитного барьера от пищеварительных ферментов хозяина и т.д.
Билет 62
В1.Организация и свойства клеточного ядра.
Ядро (лат. nucleus) — это один из структурных компонентовэукариотическойклетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Образование субъединиц рибосом также происходит в ядре в специальных образованиях - ядрышках. Клеточное ядро имеет важнейшее значение в жизнедеятельности клетки, поскольку служит хранилищем наследственной информации, содержащейся в хромосомах. Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза РНК и тРНК. Основные компоненты ядра – хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра. Во время деления клеток хромосомные нити образуют плотные спирали, вследствие чего становятся видимыми (с помощью обычного микроскопа) в форме палочек, «шпилек». Весь объем генетической информации распределен между хромосомами ядра. В процессе их изучения были выявлены следующие закономерности:
♦ в ядрах соматических клеток (т. е. клеток тела, неполовых) у всех особей одного вида содержится одинаковое количество хромосом, составляющих набор хромосом (рис. 19);
♦ для каждого вида характерен свой хромосомный набор по их количеству (например, у человека 46 хромосом, у мушки дрозофилы – 8, у аскариды – 4, у речного рака – 196, у лошади – 66, у кукурузы – 104);
♦ хромосомы в ядрах соматических клеток могут быть сгруппированы парами, получившими название гомологичных хромосом на основании их сходства (по строению и функциям);
♦ в ядрах половых клеток (гамет) из каждой пары гомологичных хромосом содержится только одна, т. е. общий набор хромосом вдвое меньше, чем в соматических клетках;
♦ одинарный набор хромосом в половых клетках называется гаплоидным и обозначается буквой n, а в соматических – диплоидным (2n).
Из изложенного ясно, что каждая пара гомологичных хромосом образована объединением отцовских и материнских хромосом при оплодотворении, т. е. слиянии половых клеток (гамет). И наоборот, при образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна.
В теле хромосом выделяют первичную перетяжку (называемую центромерой), к которой прикрепляются нити веретена деления. Она делит хромосому на два плеча. Хромосомы могут быть равноплечими, разноплечими и одноплечими.
Вопрос №55.Опишите роль ядрав реализации генетической информации.
Ядро (лат. nucleus) — это один из структурных компонентовэукариотическойклетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Образование субъединиц рибосом также происходит в ядре в специальных образованиях - ядрышках. Клеточное ядро имеет важнейшее значение в жизнедеятельности клетки, поскольку служит хранилищем наследственной информации, содержащейся в хромосомах. Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза РНК и тРНК. Основные компоненты ядра – хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра. Во время деления клеток хромосомные нити образуют плотные спирали, вследствие чего становятся видимыми (с помощью обычного микроскопа) в форме палочек, «шпилек». Весь объем генетической информации распределен между хромосомами ядра. В процессе их изучения были выявлены следующие закономерности:
♦ в ядрах соматических клеток (т. е. клеток тела, неполовых) у всех особей одного вида содержится одинаковое количество хромосом, составляющих набор хромосом (рис. 19);
♦ для каждого вида характерен свой хромосомный набор по их количеству (например, у человека 46 хромосом, у мушки дрозофилы – 8, у аскариды – 4, у речного рака – 196, у лошади – 66, у кукурузы – 104);
♦ хромосомы в ядрах соматических клеток могут быть сгруппированы парами, получившими название гомологичных хромосом на основании их сходства (по строению и функциям);
♦ в ядрах половых клеток (гамет) из каждой пары гомологичных хромосом содержится только одна, т. е. общий набор хромосом вдвое меньше, чем в соматических клетках;
♦ одинарный набор хромосом в половых клетках называется гаплоидным и обозначается буквой n, а в соматических – диплоидным (2n).
Из изложенного ясно, что каждая пара гомологичных хромосом образована объединением отцовских и материнских хромосом при оплодотворении, т. е. слиянии половых клеток (гамет). И наоборот, при образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна.
В теле хромосом выделяют первичную перетяжку (называемую центромерой), к которой прикрепляются нити веретена деления. Она делит хромосому на два плеча. Хромосомы могут быть равноплечими, разноплечими и одноплечими.
В2.Мутации несовместимые с жизнью человека.
Летальные гены Это гены, вызывающие гибель организма до достижения им половой зрелости. Летальные гены являются рецессивными. Вот несколько примеров проявления их влияния: "заячья губа" и "волчья пасть" - дефект развития верхней челюсти, гемофилия - отсутствие у крови способности свертываться, "рассасывание плодов" у внешне благополучной суки и т.д.
Полулетальные гены, например гены, определяющие двусторонний крипторхизм, в конечном счете, становятся летальными для породы в результате ее вымирания. Щенки с "волчьей пастью", если их не оперировали, не могут сосать и поэтому погибают. Серо-голубой с черным крапом окрас связан с полулетальным геном, и если он унаследован потомком от обоих родителей, то этот потомок может стать слепым, глухим или бесплодным. По этой причине двух собак такого окраса никогда не спаривают. Практически было бы лучше всего считать этот окрас дисквалифицирующим во всех породах.
В3 Фитотоксикология - это наука, изучающая ядовитые вещества растительного происхождения или отравления животных ядовитыми растениями. В капельно-жидком и парообразном состоянии они поражают кожу и глаза, при вдыхании паров — дыхательные пути и легкие, при попадании с пищей и водой — органы пищеварения.
Билет 63
В1Опишите роль ядрав реализации генетической информации.
Ядро (лат. nucleus) — это один из структурных компонентовэукариотическойклетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Образование субъединиц рибосом также происходит в ядре в специальных образованиях - ядрышках. Клеточное ядро имеет важнейшее значение в жизнедеятельности клетки, поскольку служит хранилищем наследственной информации, содержащейся в хромосомах. Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза РНК и тРНК. Основные компоненты ядра – хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра. Во время деления клеток хромосомные нити образуют плотные спирали, вследствие чего становятся видимыми (с помощью обычного микроскопа) в форме палочек, «шпилек». Весь объем генетической информации распределен между хромосомами ядра. В процессе их изучения были выявлены следующие закономерности:
♦ в ядрах соматических клеток (т. е. клеток тела, неполовых) у всех особей одного вида содержится одинаковое количество хромосом, составляющих набор хромосом (рис. 19);
♦ для каждого вида характерен свой хромосомный набор по их количеству (например, у человека 46 хромосом, у мушки дрозофилы – 8, у аскариды – 4, у речного рака – 196, у лошади – 66, у кукурузы – 104);
♦ хромосомы в ядрах соматических клеток могут быть сгруппированы парами, получившими название гомологичных хромосом на основании их сходства (по строению и функциям);
♦ в ядрах половых клеток (гамет) из каждой пары гомологичных хромосом содержится только одна, т. е. общий набор хромосом вдвое меньше, чем в соматических клетках;
♦ одинарный набор хромосом в половых клетках называется гаплоидным и обозначается буквой n, а в соматических – диплоидным (2n).
Из изложенного ясно, что каждая пара гомологичных хромосом образована объединением отцовских и материнских хромосом при оплодотворении, т. е. слиянии половых клеток (гамет). И наоборот, при образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна.
В теле хромосом выделяют первичную перетяжку (называемую центромерой), к которой прикрепляются нити веретена деления. Она делит хромосому на два плеча. Хромосомы могут быть равноплечими, разноплечими и одноплечими.
В2Изменение геномной организации наследственного материала. Геномные мутации. Рассмотренные выше механизмы рекомбинации наследственного материала (кроссинговер, расхождение гомологичных хромосом и независимое поведение негомологичных хромосом в анафазе I мейоза, оплодотворение) при закономерном их течении обусловливают комбинативную изменчивость, но не изменяют общей структуры генома как видовой характеристики. Эволюционно сложившаяся у данного вида сбалансированность по дозам отдельных генов, распределение этих генов по группам сцепления остаются стабильной характеристикой генома каждого вида. Однако как на генном и хромосомном уровнях организации наследственного материала, так и на геномном уровне он способен приобретать мутационные изменения. Эти изменения могут использоваться как эволюционный материал. При этом ускоренные темпы эволюционного процесса, наблюдаемые на отдельных этапах исторического развития, как правило, бывают обусловлены не столько накоплением генных мутаций, сколько существенными изменениями структуры именно всего генома. К последним относятся изменения дозового соотношения различных генов и изменение состава групп сцепления внутри генома.Причиной структурных изменений генома может быть нарушение тех процессов, которые в норме обеспечивают его устойчивость, в первую очередь процессов, протекающих в мейозе.Так, нарушение кроссинговера, приводящее к обмену неравноценными участками ДНК между хроматидами, может привести к утрате или удвоению определенной нуклеотидной последовательности в них. Если это затрагивает структуру отдельного гена, то возможно возникновение генной мутации с изменением количества нуклеотидов в нем (см. разд. 3.4.2.3). Если при неравноценном обмене затронут участок хроматиды, содержащий несколько генов, изменяется доза этих генов в геноме. Он либо лишается каких-то генов (деления), либо эти гены оказываются в геноме в двойном количестве (дупликапия). Изменение дозового соотношения отдельных генов наблюдается также при разных видах хромосомных перестроек, не обязательно связанных с неравноценным кроссинговером (см. разд. 3.5.3.3).Нарушение расхождения бивалентов в анафазе I мейоза является причиной изменения количества хромосом в гаплоидном наборе гамет. Нерасхождение отдельного бивалента приводит к появлению одной гаметы, лишенной данной хромосомы, и другой, имеющей эту группу сцепления в двойном количестве (рис. 3.76). Оплодотворение таких гамет нормальными половыми клетками приводит к появлению особей, в кариотипе которых изменено общее число хромосом за счет уменьшения (моносомия) или увеличения (трисомия) числа отдельных хромосом. Нарушения структуры генома, заключающиеся в изменении количества отдельных хромосом, называют анэуплоидией.
Рис. 3.76. Нарушение расхождения отдельных бивалентов (1, 2, 3) в мейозе как причина возникновения анэуплоидий:А — метафаза 1 мейоза; Б — образование аномальных гамет в результате нарушения расхождения 3-го бивалента в анафазе I мейоза; В — оплодотворение аномальных гамет нормальными гаметами другого пола; Г — образование зигот с анэуплоидным кариотипом (моносомия или трисомия по 3-й хромосоме, соответственно сверху и снизу)
В том случае, если в целом повреждается механизм распределения гомологичных хромосом между полюсами веретена (что наблюдается при его разрушении), клетка остается неразделившейся. Во второе деление мейоза она вступает не гаплоидной, а диплоидной. Из нее образуются диплоидные гаметы. Оплодотворение таких гамет приводит к образованию триплоидных организмов. Увеличение в кариотипе зиготы числа наборов хромосом называют полиплоидией.Такие структурные изменения наследственного материала довольно часто встречаются в природе у растений, что обеспечивает у них относительно быстрые темпы видообразования. Полиплоидизацию путем искусственного разрушения веретена деления с помощью колхицина широко применяют в селекции при выведении новых сортов растений.Структурные изменения генома могут выражаться в ином распределении генов по группам сцепления. Когда отдельные хромосомы соединяются по типу робертсоновской транслокации или, наоборот, из одной хромосомы образуются две самостоятельные, это ведет к изменению числа групп сцепления в геноме (см. разд. 3.5.3.3). При реципрокных транслокациях между негомологичными хромосомами или при инверсиях изменяется место положения отдельных генов, что нередко сказывается на характере их функционирования (эффект положения).Любые мутационные изменения в наследственном материале гамет —генеративные мутации —становятся достоянием следующего поколения, если такие гаметы участвуют в оплодотворении. Поэтому отклонения в течении митоза или мейоза в клетках-предшественницах гамет имеют большое эволюционное значение. Если же мутации любого ранга (генные, хромосомные или геномные) возникают в соматических клетках — соматические мутации — они передаются только потомкам этих клеток, т.е. не выходят за пределы данного организма. Исключение составляют соматические мутации, возникшие в клетках органов вегетативного размножения, от которых они передаются новому поколению организмов. Одной из причин соматических мутаций являются патологические митозы. При нарушении нормального течения митоза (нерасхождение хроматид отдельных хромосом, многополюсные митозы и т.д.) дочерние клетки получают аномальную наследственную программу и их дальнейшее развитие отклоняется от нормы. Патологические митозы часто наблюдаются в клетках злокачественных опухолей.Таким образом, несмотря на существование механизмов, обеспечивающих стабильность структуры генома, на этом уровне организации наследственного материала могут появляться эволюционно значимые изменения. Они способны обеспечить достаточно резкий скачок в ходе исторического развития живой природы.
В3.Факторы, влияющие на изменение климата.
Изменение климата — колебания климатаЗемли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, по одной из версий, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется как правило (особенно в контексте экологической политики) для обозначения изменения в современном климате (см. глобальное потепление).
Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, — это изменения солнечной радиации и орбиты Земли.
изменение размеров и взаимного расположения материков и океанов,
изменение светимости солнца,
изменения параметров орбиты Земли,
изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,
изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,
изменение отражательной способности поверхности Земли (альбедо),
изменение количества тепла, имеющегося в глубинах океана.
Климатические изменения на Земле
Погода — это ежедневное состояние атмосферы. Погода является хаотичной не линеарной динамической системой. Климат — это усредненное состояние погоды и он, напротив, стабилен и предсказуем. Климат включает в себя такие показатели как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.
4, ленточный червь.1-головка 2. гермафродитный членик 3-зрелый членик
Билет 64
В1. Поток информации в клетке.
Поток информации
Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ.
Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, а также передает в ряду поколений.
В потоке информации участвуют ядро (конкретно ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат трансляции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуры и используются в качестве катализаторов или структурных белков (рис. 2.7). Кроме основного по объему заключенной информации ядерного генома в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях — и хлоропластов.
В2Причины гетероплоидии у человека.
Гетероплоидия (анеуплоидия) — явление, при кбтором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Формы, имеющие дополнительные хромосомы, называются полисомиками. Форма 2п +1 — трисомик, так как одна хромосома повторена трижды. Форма 2п — 1 — моносомик, так как одна хромосома представлена в единственном числе. Форма 2n -2- асомик (нуллисомик), так как отсутствует пара гомологичных хромосом. Добавление и утрата одной хромосомы могут быть одновременно в двух и более парах: 2n+1 + 1 -двойной трисомик, 2n- 1 — 1 -двойной моносомик и т. д. Гетероплоидные клетки могут появляться в результате нарушений мейоза или митоза. Например, нерасхождение пары хромосом (АН) в мейозе приводит к образованию. При участии таких гамет в оплодотворении появятся гетероплоидные формы 2п-А. Добавление или утрата одной хромосомы вызывает значительные изменения фенотипа, благодаря которым можно установить влияние отдельных хромосом и генов, в них локализованных, на проявление определенных свойств и признаков организма. Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью. Однако анеуплоидные формы, в частности моносомики, имеют практическое значение, так как используются в генетической инженерии для направленного «конструирования» определенных генотипов путем введения желательных генов, а также в селекции при замещении Х-хромосом для улучшения сорта растений. Путем замещения отдельных хромосом получены новые формы пшеницы, устойчивые к ржавчине и другим заболеваниям. У человека также встречаются случаи гетероплоидии, которые вызывают хромосомные болезни.
В3.Понятие об антропонозах, энтропозоонозах. Зоонозах.
нтропонозы (антропонозные инфекции) — (от др.-греч. ἄνθρωπος — человек, νόσος — болезнь), группа инфекционных и паразитарных заболеваний, возбудители которых способны паразитировать в естественных условиях только в организме человека.
Источником возбудителей инфекции при антропонозах являются только люди — больные или носители возбудителей инфекции (или инвазии); при некоторых антропонозах (например, при кори, ветряной оспе) источником возбудителей инфекции является только больной человек.
Инфекционные и инвазионные болезни, общие для человека и животных, носят название антропозоонозов, или зоонозов, как их называют в медицине. Человек заражается ими при контакте с больными животными, трупами, во время снятия шкур, при разделке туш, обработке животного сырья. Заражение может произойти в результате потребления мяса и других животных продуктов или зараженной воды, а также через переносчиков - многочисленных кровососущих насекомых и клещей.
Зоонозы (зоонозные инфекции) — (от др.-греч. ζῷον — «животное, живое существо» и νόσος — «болезнь»), группа инфекционных и паразитарных заболеваний, возбудители которых паразитируют в организме определенных видов животных, и для которых животные являются естественным резервуаром. Источником возбудителей инфекции (или инвазии) для человека является больное животное или животное — носитель возбудителей. При определенных санитарно-экономических условиях, благоприятствующих тому или иному механизму передачи возбудителя, возможно передача зоонозов людям. Но циркулировать в коллективах людей возбудители зоонозов не могут, так как человек для них является биологическим тупиком, не включается в течение эпизоотического процесса и не участвует в эволюции возбудителя как паразитического вида. Лишь при некоторых зоонозах, например при чуме, жёлтой лихорадке, в определенных условиях источником возбудителей инфекции может быть больной человек.
Профилактика зоонозов проводится с учетом эпидемической роли животных — источников инфекции, а также особенности путей передачи возбудителей. Например, при зоонозах, связанных с домашними животными, необходим ветеринарно-санитарный надзор и защита людей от заражения при уходе за животными. При зоонозах связанных с дикими животными, необходимо наблюдение за их численностью (например, численностью грызунов), в некоторых случаях (при борьбе с чумой, туляремией) уничтожение грызунов (дератизация). Кроме того, проводится защита людей от нападения кровососущих насекомых и клещей (например, применение репеллентов, защитных сеток, защитной одежды), а также иммунизация отдельных групп людей по эпидемическим показаниям.
Зооантропонозы , или антропозоонозы, — заболевания, передающиеся от животного человеку или наоборот при естественном контакте. Главным образом данные болезни обнаруживаются у животных, однако могут развиваться и у человека (например, лептоспироз, сибирская язва и бешенство).11.Экологические принципы борьбы с паразитарными заьолеваниями. История паразитологии (Лаверен, В.А. Догель, Е.Н. Павловский, К.И. Скрябин). Распространение паразитарных форм в животном мире.
В древности были известны паразиты, причинявшие вред здоровью человека и животных. Упоминания об отдельных паразитах имеются в трудах знаменитых греков - Гиппократа (460-375 гг. до н.э.) и Аристотеля (384-322 гг. до н.э.), римлянина Варрона (116-27 гг. до н. э.) и других авторов. До XVII столетия паразитологические исследования носили эмпирический характер. С XII до XVIII в. паразитология была описательной. Изобретение голландцем Левенгуком (1632-1723) микроскопа возвестило новую эру в истории биологии. Паразитология как паука сформировалась в XIX столетии. С этого времени началось изучение жизненных циклов гельминтов (экспериментальная паразитология).
Велика роль отечественных ученых в развитии паразитологии. В дореволюционный период исследования по паразитологии преимущественно проводили зоологи и представители других специальностей. П. С. Паллас (1741-1811) впервые описал возбудителей макраканторинхоза свиней, тениоза гидатигенного плотоядных, фимбриариоза птиц, а также многих других представителей животного мира. Н. А. Холодковский (1858-1921) успешно изучал строение, развитие и систематику цестод и других гельминтов, составил первый русский атлас паразитических червей человека. Д. Л. Романовский (1861-1921) предложил новый метод окраски простейших и форменных элементов крови, изложил основные положения химиотерапии.
Однако паразитологические исследования, проводимые отечественными учеными до Октябрьской революции, были малочисленными и разрозненными.
Только при Советской власти паразитология начала быстро развиваться по линии общей, ветеринарной и медицинской. Созданы научно-исследовательские институты, опытные станции, лабораторип, а в вузах - кафедры паразитологии. Подготовлены кадры учеиых различного профиля.
В Советском Союзе сформировались четыре научные школы паразитологов - академика К. И. Скрябина, академика Е. Н. Павловского, профессора В. Л. Якимова и профессора В. А. Догеля.
Академик К. И. Скрябин (1878-1972) создал научную гельминтологическую школу, объединяющую научных работников исследовательских учреждений, преподавателей учебных заведений п специалистов - производственников ветеринарного, медицинского, биологического и агрономического профиля. Эта школа проводит всесторонние исследования гельминтов и вызываемые ими заболевания (гельминтозы), разрабатывает и проводит профилактические и оздоровительные противогельминтозные мероприятия. Организатор гельминтологической школы в СССР разработал учение о девастации (полное уничтожение возбудителей гельминтозов и других инвазионных болезней). За большие заслуги в развитии гельминтологии К. И. Скрябину присвоены звания Героя Социалистического Труда, лауреата Ленинской и двух Государственных премий, оп награжден десятью советскими орденами (шесть ордепов Ленипа) и многими медалями. Был избран действительным членом (академиком) Академии наук СССР, Всесоюзной Академии сельскохозяйственных паук имени В. И. Ленипа (ВАСХНИЛ) и Академии медицинских паук, а также ряда зарубежных академий. К. И. Скрябин написал свыше 700 научных работ, среди которых много монографий п несколько учебникоп по паразитологии для вузов.
По образованию К. И. Скрябин ветеринарный врач, по специальности гельминтолог. Ближайшие ученики К. И. Скрябина - профессора В. С. Ершов, К. М. Рыжиков, И. В. Орлов, Н. П. Шихобалова, К. И. Абуладзе и др.
Академик Е. Н. Павловский (1884-1965) -основоположник школы, изучающей проблемы общей паразитологии. Он создал учение о природной очаговости трансмиссивных болезней. За выдающиеся заслуги в развитии паразитологии Е. II. Павловскому присвоено звание Героя Социалистического Труда. Он удостоен звания лауреата Ленинской и двух Государственных премий, награжден орденами и медалями, избран действительным членом Академии наук СССР и -"-Академии медицинских наук. Перу этого ученого принадлежит свыше 600 паучных работ, в том числе несколько учебников. По образованию Е. Н. Павловский врач, по специальности - паразитолог. Ученики Е. Н. Павловского - профессора П. А. Петрищева, А. С. Мончадский, Г. С. Первомайский, Г. Г. Смирнов, И. Г. Галуз и др.
Профессор В.Л.Якимов (1870-1940) создал ветеринарную протозоологическую школу, которая изучает паразитических простейших (пироплазмиды, кокцидии, жгутиковые и токсоплазмы), разрабатывает меры борьбы с вызываемыми ими протозойньтми болезнями животных. Организатор школы описал большое число новых видов - возбудителей трипаносомозов, кокцидиозов и пироплазмидозов сельскохозяйственных животных, "опубликовал свыше 500 научных работ, в том числе несколько монографий. По образованию В. Л. Якимов ветеринарный врач, а по специальности протозоолог. Среди его учеников немало известных ветеринарных протозоологов (профессора П. А. Колабский, В. Ф. Гусев, С. П. Никольский, II. А. Золотарев, П. С. Иванова и др.).
Профессор В. А. Догель (1882-1955) -основоположник эколого-паразитологической школы, выясняющей зависимость инвазированности животных от условий внешней среды и физиологического состояния организма хозяев. Создатель данной школы разработал методику паразитологического вскрытия рыб, организовал изучение паразитов этого вида животных в стране. Он написал около 300 научных работ, в том числе несколько учебников и монографий. За книгу «Общая протистология» В. А. Догель был удостоен лауреата Ленинской премии. По образованию В. А. Догель биолог, а по специальности паразитолог. Ближайшие ученики В. А. Догеля - профессора А. П. Маркевич, Ю. И. Полянский, Г. С. Марков, И. Е. Быховская-Павловская, Е. М. Хейсин и др.
Билет 65
В1.Организация эу- и гетерохроматина. Структура и химия хромасаомы.
Гетерохроматин– неактивная, компактно упакованная разновидность ядерного вещества – хроматина. В хромосомах гетерохроматиновые участки расположены преимущественно в районах центромер. По сравнению с эухроматиновыми участками они содержат меньше структурных генов (кодирующих белки или полипептиды), отличаются более поздней репликацией (удвоением). Расположение гетерохроматина на хромосомах очень индивидуально.
Основные отличия гетерохроматина от эухроматина.
1) Плотная упаковка ДНК. В топологически разомкнутой ДНК не может существовать торсионное напряжение. Различия в упаковке эу- и гетерохроматиновых блоков метафазных хромосом выявляются не только при окраске по Гимза (G- и С-полосы), но также при использовании электронного или фазово-контрастного микроскопа. По завершении митоза компактное состояние ДНК частично сохраняется и проявляется в виде хромоцентров интерфазного ядра. Плотная упаковка ДНК деконденсируется холодом и колцемидом.
2) Поздняя репликация ДНК. В настоящее время принято считать, что это не запаздывание репликации ДНК гетерохроматина в S-периоде клеточного цикла, а просто ДНК гетерохроматина имеет другое расписания репликации.
3) Подавлена транскрипция (инактивация Х хромосомы?). В качестве доказательства приводится пример: ядра покоящихся лимфоцитов периферической крови почти полностью гетерохроматизированы и транскрипционно неактивны.
4) Гетерохроматин вызывает эффект положения гена. В рамках обсуждаемой гипотезы автор утверждает, что ген, попавший в блок гетерохроматина, должен быть инактивирован, потому что разрывы в его ДНК будут индуцированы одновременно с индукцией разрывов в молекулах ДНК всего блока в процессе его гетерохроматинизации.
5) Склонность к агрегации (липкость). Неоднократно отмечалась упорядоченность хромосом в митозе, приписываемая «притяжению» между гетерохроматиновыми районами гомологов. Описана конъюгация гетерохроматиновых районов сестринских хроматид [2, 3]. В политенных ядрах нередко образуются эктопические контакты между блоками интеркалярного гетерохроматина разных хромосом [4].
Все эти проявления липкости могут быть следствием образования гибридных ДНК, включающих в себя однонитевые участки двух разных блоков гетерохроматина.
6) Высокая частота локализации концов перестроек хромосом. Общепринято, что хромосомная перестройка получается после разрыва пары внутри- или межхромосомных связей, инверсии концов и их последующего восстановления. Автор гипотезы предполагает, что наличие однонитевых разрывов с «липкими» концами в гетерохроматиновой ДНК заметно облегчает образование гибридных участков и тем самым увеличивает частоту перестроек, концы которых оказываются локализованными в блоках гетерохроматина
7) Формируется в онтогенезе через разрывы ДНК. Процесс формирования гетерохроматина в раннем развитии животных достаточно продолжителен и сопряжен с разрывами ДНК. У самок мышей гетерохроматинизация Х-хромосомы происходит в те же сроки, и тем же механизмом, что и формирование гетерохроматина.
8) Вариабельность количества ДНК.
9) Гетерохроматин обогащен повторами и мобильными генетическими элементами.
10) Подавлена рекомбинация в мейозе.
В2.Изменения нуклеотидных последовательностей ДНК. Генные мутации.
Мутации по типу замены азотистых оснований. Эти мутации происходят в силу ряда конкретных причин. Одной из них может быть возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания, уже включенного в спираль ДНК. Если такая измененная форма основания остается не замеченной ферментами репарации, то при ближайшем цикле репликации она может присоединять к себе другой нуклеотид. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты (рис. 3.18). Образующийся при этом урацил, не замеченный ферментом ДНК-гликозилазой, при репликации соединяется с аденином, который впоследствии присоединяет тимидиловый нуклеотид. В результате пара Ц—Г замещается в ДНК парой Т—А (рис. 3.19, I). Дезаминирование метилированного цитозина превращает его в тимин (см. рис. 3.18). Тимидиловый нуклеотид, являясь естественным компонентом ДНК, не обнаруживается ферментами репарации как изменение и при следующей репликации присоединяет адениловый нуклеотид. В результате вместо пары Ц—Г в молекуле ДНК также появляется пара Т—А.
Другой причиной замены оснований может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Если эта ошибка остается не замеченной ферментами репликации и репарации, измененное основание включается в процесс репликации, что нередко приводит к замене одной пары на другую. Примером этого может служить присоединение в ходе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду. При последующей репликации 5-БУ охотнее присоединяет к себе не аденин, а гуанин. Гуанин в ходе дальнейшего удвоения образует комплементарную пару с цитозином. В итоге пара А—Т заменяется в молекуле ДНК парой Г—Ц . Из приведенных примеров видно, что изменения структуры молекулы ДНК по типу замены оснований возникают либо до, либо в процессе репликации первоначально в одной полинуклеотидной цепи. Если такие изменения не исправляются в ходе репарации, то при последующей репликации они становятся достоянием обеих цепей ДНК.
В3.Токсоплазма. Морфофункциональная характеристика: цикл развития, пути заражения, патогенное действие, методы лабораторной диагностики.
Токсоплазма (лат. Toxoplasma) — монотипный род паразитическихпротозоев, включающий, видимо, один вид — Toxoplasma gondii. Основные хозяева токсоплазм — представители семейства кошачьих. В качестве промежуточных хозяев выступают различные виды теплокровных животных, в том числе и люди. Токсоплазмоз, болезнь, вызываемая токсоплазмой, обычно протекает у человека легко. Однако для плода, в случае если мать заразилась токсоплазмозом во время беременности, а также для человека или кошки с пониженным иммунитетом эта болезнь может иметь серьёзные последствия, вплоть до летального исхода. Toxoplasma gondii принадлежит к типу Apicomplexa и является единственным описанным видом родаToxoplasma. Тем не менее, высказывалась гипотеза, что на самом деле может существовать несколько видов токсоплазм[
Жизненный циклToxoplasma gondii состоит из двух фаз. Половая часть жизненного цикла проходит только в особях некоторых видов семейства кошачьих (дикие и домашние кошки), которые становятся первичным хозяином паразитов. Бесполая часть жизненного цикла может проходить в любом теплокровном животном, например, в млекопитающих (и в кошках тоже) и в птицах.
В этих промежуточных хозяевах паразит вторгается в клетки, формируя так называемые межклеточные паразитофорные вакуоли, содержащие брадизоиты, медленно воспроизводящиеся формы паразита[2]. Вакуоли формируют тканевые цисты, в основном, в мышцах и в мозге. Так как паразит находится внутри клеток, то иммунная система хозяина не может обнаружить эти цисты. Сопротивляемость к антибиотикам различна, но цисты очень трудно вывести из организма полностью. Внутри этих вакуолей T. gondii размножается последовательностью делений на две части до тех пор, как инфицированная клетка в конце концов не лопается и тахизоиты не выходят наружу. Тахизоиты подвижны и бесполым способом размножаются, производя новых паразитов. В отличие от брадизоитов, свободные тахизоиты легко устраняются иммунной системой хозяина, но при этом могут заразить клетки и сформировать брадизоиты, тем самым поддерживая инфекцию.
Тканевые цисты проглатываются кошкой (например, когда она съедает заражённую мышь). Цисты выживают в желудке кошки, и паразиты заражают эпителиальные клетки тонкой кишки, где они приступают к половому размножению и формированию ооцист. Ооцисты выходят наружу с фекалиями. Животные (в том числе, люди) проглатывают ооцисты (например, поедая немытые овощи и т. д.) или тканевые цисты (в плохо приготовленном мясе) и заражаются. Паразиты внедряются в макрофаги в кишечном тракте и через кровь распространяются по телу.
Заражение токсоплазмой в острой стадии может быть бессимптомным, но часто вызывает симптомы гриппа на раннеострых стадиях, и, как и грипп, может в редких случаях привести к смерти. Острая стадия спадает за период от нескольких дней до месяцев, переходя в хроническую стадию. Хроническая инфекция обычно бессимптомна, но в случае иммунноослабленных пациентов (а также пациентов, заражённых ВИЧ, или пациентов, проходящих иммунноподавляющую терапию после пересадки органов) токсоплазмоз может развиваться. Наиболее частым проявлением токсоплазмоза у иммунноослабленных пациентов является токсоплазмозный энцефалит, который может привести к смерти. Если заражение T. gondii возникает впервые во время беременности, то паразит может проникнуть через плаценту, заразить плод, что может привести к гидроцефалии, внутричерепному обызвествлению или к хориоретиниту, а также к самопроизвольному аборту или внутриутробной смерти.
Было доказано, что паразит может влиять на поведение хозяина: заражённые крысы и мыши меньше боятся кошек; замечены факты того, что заражённые крысы сами ищут места, где мочилась кошка. Этот эффект благоприятен для паразита, который сможет размножаться половым способом, если его хозяин будет съеден кошкой[3]. Механизм этого изменения ещё до конца не изучен, но существуют доказательства того, что токсоплазмоз повышает уровень дофамина у заражённых мышей.
Существует несколько независимых наблюдений, подтверждающих роль заражения токсоплазмой в случаях проявления шизофрении и паранойи[5]:
Острая инфекция токсоплазмы иногда ведёт к психотическим симптомам, не отличающимся от шизофрении.
Некоторые антипсихотические медицинские препараты, используемые для лечения шизофрении (например, галоперидол), также останавливают развитие токсоплазмы в клеточных культурах.
Несколько исследований нашли значительно повышенные уровни антител к токсоплазме у пациентов, больных шизофренией, по сравнению со всем остальным населением.[6]
Заражение токсоплазмой ведёт к повреждению астроцитов в головном мозге, точно такие же повреждения астроцитов наблюдаются при шизофрении.
Активным исследователем роли токсоплазмы и других инфекций при шизофрении является американский психиатр Фуллер Тори.
Билет 66
В1. Уровни структурной организации хроматина
Сохраняя преемственность в ряду клеточных поколений, хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец — хромосом.
Интерфазную и метафазную формы существования хроматина расценивают как два полярных варианта его структурной организации, связанных в митотическом цикле взаимопереходами. В пользу такой оценки свидетельствуют данные электронной микроскопии о том, что в основе как интерфазной, так и метафазной формы лежит одна и та же элементарная нитчатая структура. В процессе электронно-микроскопических и физико-химических исследований в составе интерфазного хроматина и метафазных хромосом были выявлены нити (фибриллы) диаметром 3,0—5,0, 10, 20—30 нм. Полезно вспомнить, что диаметр двойной спирали ДНК составляет примерно 2 нм, диаметр нитчатой структуры интерфазного хроматина равен 100—200, а диаметр одной из сестринских хроматид метафазной хромосомы — 500— 600 нм. Наиболее распространенной является точка зрения, согласно которой хроматин (хромосома) представляет собой спирализованную нить. При этом выделяется несколько уровней спирализации (компак-тизации) хроматина (табл. 3.2).
Фибрилла |
Степень укорочения |
Диаметр, нм |
|
по сравнению с предшествующей структурой |
по сравнению с молекулой ДНК |
||
ДНК |
1 |
1 |
1—2 |
Нуклесомная нить |
7 |
7 |
10 |
Элементарная хроматиновая фибрилла |
6 |
42 |
20—30 |
Интерфазная хромонема |
40 |
1600 |
100—200 |
Метафазная хроматида |
5 |
8000 |
500—600 |
Нуклеосомиая нить. Этот уровень организации хроматина обеспечивается четырьмя видами нуклеосомных гистонов: Н2А, Н2В, НЗ, Н4. Они образуют напоминающие по форме шайбу белковые тела — коры, состоящие из восьми молекул (по две молекулы каждого вида гистонов) Молекула ДНК комплектируется с белковыми корами, спирально накручиваясь на них. При этом в контакте с каждым кором оказывается участок ДНК, состоящий из 146 пар нуклеотидов (п.н.). Свободные от контакта с белковыми телами участки ДНК называют связующими или линкерными. Они включают от 15 до 100 п.н. (в среднем 60 п.н.) в зависимости от типа клетки. Отрезок молекулы ДНК длиной около 200 п. н. вместе с белковым кором составляет нуклеосому. Благодаря такой организации в основе структуры хроматина лежит нить, представляющая собой цепочку повторяющихся единиц — нуклеосом (рис. 3.46, Б). В связи с этим геном человека, состоящий из 3 · 109 п. н., представлен двойной спиралью ДНК, упакованной в 1,5 · 107 нуклеосом. Вдоль нуклеосомной нити, напоминающей цепочку бус, имеются области ДНК, свободные от белковых тел. Эти области, расположенные с интервалами в несколько тысяч пар нуклеотидов, играют важную роль в дальнейшей упаковке хроматина, так как содержат нуклеотидные последовательности, специфически узнаваемые различными негистоновыми белками.В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10—11 нм.
Хроматиновая фибрилла. Дальнейшая компактизация нуклеосомной нити обеспечивается пистоном HI, который, соединяясь с линкерной ДНК и двумя соседними белковыми телами, сближает их друг с другом. В результате образуется более компактная структура, построенная, возможно, по типу соленоида. Такая Хроматиновая фибрилла, называемая также элементарной, имеет диаметр 20—30 нм |
|
Интерфазная хромонема. Следующий уровень структурной организации генетического материала обусловлен укладкой хроматиновой фибриллы в петли. В их образовании, по-видимому, принимают участие негистоновые белки, которые способны узнавать специфические нуклеотидные последовательности вненуклеосомной ДНК, отдаленные друг от друга на расстояние в несколько тысяч пар нуклеотидов. Эти белки сближают указанные участки с образованием петель из расположенных между ними фрагментов хроматиновой фибриллы (рис. 3.48). Участок ДНК, соответствующий одной петле, содержит от 20 000 до 80 000 п. н. Возможно, каждая петля является функциональной единицей генома. В результате такой упаковки Хроматиновая фибрилла диаметром 20—30 нм преобразуется в структуру диаметром 100—200 нм, называемую интерфазной хромонемой.
Метафазная хромосома. Вступление клетки из интерфазы в митоз сопровождается суперкомпактизацией хроматина. Отдельные хромосомы становятся хорошо различимы. Этот процесс начинается в профазе, достигая своего максимального выражения в метафазе митоза и анафазе (см. разд. 2.4.2). В телофазе митоза происходит декомпак-тизация вещества хромосом, которое приобретает структуру интерфазного хроматина. Описанная митотическая суперкомпактизация облегчает распределение хромосом к полюсам митотического веретена в анафазе митоза.
В2.Механизмы онкогенеза.Наше тело состоит из бесчисленного числа различных клеток. Клетки очень различаются по строению и функции: клетки кожи, нервов, сердца, легких, крови, иммунной системы совершенно различны. Однако, вне зависимости от «профессии», все клетки умеют делится и созревать из своих более ранних предшественников (иначе как они могли возникнуть?). Кроме того, все клетки умеют погибать вовремя. Их гибель не случайна и тщательно контролируется: организм точно регулирует численность клеток в тканях. Запрограммированная гибель клеток называется апоптоз.
Эти три свойства - деление, созревание и апоптоз совершенно необходимы для жизни клеток в большом многоклеточном организме. Вместе с тем, нарушения этих трех основ жизнедеятельности клетки приводят к развитию опухолей. Накопление опухолевых клеток происходит из за того, что они бесконтрольно делятся, либо из за того, что они не могут созреть и превратиться в своих высоко-профессиональных потомков («заморожены» на стадии развития), либо из за того, что они не могут умереть вовремя.
Кроме того, опухоль всегда клональна. Это означает, что все клетки опухоли произошли из одной и представляют собой точные копии (клоны) исходной клетки. Строго говоря, все клетки организма клональны - ведь они возникли из зиготы, образовавшейся после слияния сперматозоида и яйцеклетки. Но во время роста и созревания организма клетки сильно специализируются и становятся совсем не похожи одна на другую.
Так, «профессия» лимфоцитов - защищать нас от инфекций. Лимфоциты отличаются друг от друга тем, что отвечают на разных возбудителей, а также своей ролью в иммунной системе. Поскольку деление, созревание и запрограммированная смерть свойственны всем клеткам, опухоль может развиться практически из любого типа клеток, в том числе из лимфоцитов.
Нарушения деления, созревания и запрограммированной гибели возникают из-за повреждений генов. Клетки имеют множество встроенных систем защиты против этих внутренних генетических ошибок, но эти защитные системы могут ошибаться, поврежденная клетка выживает и образует множество себе подобных (клонов). Повреждения некоторых генов могут наследоваться, предрасполагая к опухоли.
В3Вопросы радиационной безопасности человека. Последствия аварии на Чернобыльской АЭС.
Вред радиоактивных элементов и воздействие радиации на человеческий организм активно изучается учёными всего мира. Доказано, что в ежедневных выбросах из АЭС содержится радионуклид «Цезий-137», который при попадании в организм человека вызывает саркому (разновидность рака), «Стронций-90» замещает кальций в костях и грудном молоке, что приводит к лейкемии (раку крови), раку кости и груди. А даже малые дозы облучения «Криптоном-85» значительно повышают вероятность развития рака кожи.
Сотрудники www.dozimetr.biz отмечают, что наибольшему воздействию радиации подвергаются люди, проживающие в крупных городах, ведь помимо естественного радиационного фона на них ещё воздействуют стройматериалы, продукты питания, воздух, зараженные предметы. Постоянное превышение над естественным радиационным фоном приводит к раннему старению, ослаблению зрения и иммунной системы, чрезмерной психологической возбудимости, гипертонии и развитию аномалий у детей.
аже самые малые дозы облучения вызывают необратимые генетические изменения, которые передаются из поколения в поколение, приводят к развитию синдрома Дауна, эпилепсии, появлению других дефектов умственного и физического развития. Особо страшно то, что радиационному заражению подвергаются и продукты питания, и предметы быта. В последнее время участились случаи изъятия контрафактной и низкокачественной продукции, являющейся мощным источником ионизирующего излучения. Радиоактивными делают даже детские игрушки! О каком здоровье нации может идти речь?!
Единственный способ хоть как-то обезопасить себя и своих близких от смертельного воздействия — купить дозиметр радиации. С ним Вы сможете за считанные секунды проверить безопасность детских игрушек, продуктов питания, ювелирных украшений и всего того, что приносите в дом, с чем играют ваши дети. Доказано, что последствия облучения крайне тяжело лечить, зато постараться максимально защитить себя и свою семью от этого в ваших силах.
4,А-собачий клещ
Билет 67
В1.Первый уровень компактизации ДНК. Структурная роль нуклиосом. Нуклиосомы при репликации. Политенные хромосомы.
В ранних биохимических и электронномикроскопических работах было показано, что препараты ДНП содержат нитчатые структуры с диаметром от 5 до 50 нм. Постепенно стало ясно, что диаметр фибрилл хроматина зависит от способа выделения препарата. На ультратонких срезах интерфазных ядер и митотических хромосом после фиксации глутаровым альдегидом обнаруживались хроматированные фибриллы толщиной 30 нм. Такие же размеры имели фибриллы хроматина при физической фиксации ядер - при быстром замораживании ядер, скалывании объекта и получении реплик с таких препаратов. В последнем случае исключалось воздействие на хроматин переменных химических условий. Но все эти методы и приемы не давали никакой информации о характере локализации ДНК и гистонов в хроматиновых фибриллах. Крупным событием в изучении хроматина было открытие двумя разными способами нуклеосом - дискретных частиц хроматина. Так при осаждении на подложку для электронной микроскопии препаратов хроматина в щелочных условиях при низкой ионной силе, можно было видеть, что нити хроматина представляли собой что-то, напоминающее "бусы на нитке": небольшие, около 10 нм, глобулы, связанные друг с другом отрезками ДНК длиной около 20 нм. Эти наблюдения совпадали с результатами фракционирования хроматина после частичного нуклеазного переваривания. Было найдено, что если подвергнуть действию нуклеазы микрококков выделенный хроматин, то он подвергается распаду на регулярно повторяющиеся структуры. Так ДНК, полученная из хроматина, обработанного нуклеазой, состояла из серии отрезков, кратных 200 парам оснований; встречались отрезки в 200, 400, 600, 800 и больше пар нуклеотидов (п.н.). Это говорит о том, что нуклеазной атаке в составе хроматина подвергаются участки ДНК, расположенные примерно через каждые 200 п.н. При этом в кислоторастворимую фракцию (низкополимерная) ДНК уходит всего 2% ядерной ДНК. Кроме того после такой нуклеазной обработки из хроматина путем центрифугирования удается выделить фракцию частиц со скоростью седиментации 11S (S - единица Сведберга, определяющая скорость седиментации частиц, равна 1 х 10-13 с), а также частицы кратного этой величине размера: димеры, тримеры, тетрамеры и т.д. Оказалось, что частицы 11S содержат ДНК около 200 п.н. и восемь гистонов (октамер) по две копии гистонов H2A, H2B, H3 и H4 и одну копию гистона H1. Такая сложная нуклеопротеидная частица получила название нуклеосомы. Более подробный анализ этой фракции показал, что нуклеосома устроена следующим образом: октамер гистонов образует белковую основу-сердцевину (от англ. core, часто в нашей литературе этот термин используется без перевода: кор, коровая частица), по поверхности которой располагается ДНК величиной в 146 п.н., образующая 1,75 оборота; остальные 54 п.н. ДНК образуют участок, несвязанный с белками сердцевины - линкер, который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Гистон H1 связывается частично с основной, сердцевиной и с участком линкера (около 30 п.н.). Следовательно, полная нуклеосома содержит около 200 п.н. ДНК (146 п.н.- сердцевина, 30 п.н. - участок линкера в комплексе с гистоном H1, 30 п.н. - свободная ДНК), октамер сердцевинных (коровых) гистонов и одну молекулу гистона H1. Молекулярная масса полной нуклеосомы - 262000 Да. Рассчитано, что на весь гаплоидный геном человека (3 х 109 пар оснований) приходится 1,5 х 107 нуклеосом. Сердцевина или коровая частица (или минимальная нуклеосома) очень консервативны по своей структуре: они всегда содержат 146 п.н. ДНК и октамер гистонов. Линкерный участок может значительно варьировать (от 8 до 114 п.н. на нуклеосому). Используя метод рассеяния нейтронов удалось установить форму и точные размеры нуклеосом. При грубом приближении - это плоский цилиндр или шайба диаметром 11 нм и высотой 6 нм. Располагаясь на подложке для электронного микроскопирования они образуют «бусины», глобулярные образования около 10 нм, гуськом, тандемно сидящие на вытянутых молекулах ДНК. На самом же деле вытянутыми являются только линкерные участки, остальные три четверти длины ДНК спирально уложены по периферии гистонового октамера. Сам гистоновый октамер, как считают, имеет форму, напоминающую мяч для игры в рэгби, в состав которого входит тетрамер (H3 · H4)2 и два независимых димера H2A · H2B.
В фибриллах хроматина линкерный участок не линеен, а продолжая спираль ДНК на поверхности нуклеосомной частицы,связывает соседние нуклеосомы так, что образуется как бы сплошная нить, толщиной около 10 нм, состоящая из тесно расположенных нуклеосом. При этом за счет дополнительной спирализации ДНК (1 отрицательный супервиток ДНК на 1 нуклеосому) происходит первичная компактизация ДНК, с плотностью упаковки равной 6-7 (200 п.н. длиной 68 нм, уложены в глобулу диаметром 10 нм). Укладка почти двух витков ДНК по периферии сердцевин нуклеосомы происходит, как считается, за счет взаимодействия положительно заряженных аминокислотных остатков на поверхности октамера гистонов с фосфатами ДНК. N- и C-концевые участки сердцевинных гистонов, обогащенные положительными зарядами, вероятно, служат для дополнительной стабилизации структуры нуклеосомы.
Ведущая роль сердцевинных (коровых) белков в компактизации ДНК показана при самосборке нуклеосом. Регулируя последовательность добавления гистонов и ДНК, удалось получить полную реконструкцию нуклеосом. В этом процессе не играет никакой роли источник, откуда была взята ДНК: это может быть ДНК бактерии и даже циклическая ДНК вирусов. Оказалось, что для образования нуклеосом гистон H1 не требуется, он участвует в связывании уже готовых нуклеосом друг с другом и в образовании более высоких уровней компактизации ДНК. Ключевыми в построении нуклеосом оказались гистоны H3 и H4. При этом вначале ДНК связывается с тетрамером (H3 · H4)2 к которому позжеприсоединяются два димера H2A · H2B. Вероятно, высокая консервативность в строении гистонов H3 и H4 отражает их ведущую структурную роль на первых этапах компактизации ДНК при образовании нуклеосом.
В2 Онкогенные вирусы. Жизненный цикл ретровирусов.
Особый интерес среди вирусных болезней вызывает СПИД (синдром приобретенного иммунодефицита человека), поскольку это относительно новая болезнь. Впервые сообщение о ней появилось в США в 1981 г. СПИД вызывается вирусом иммунодефицита человека, или сокращенно ВИЧ.
Интерес к этому вирусу объясняется еще и тем обстоятельством, что ВИЧ относится к группе вирусов, получивших название ретровирусов — название, отражающее следующую особенность этого вируса. Обычно перенос генетической информации идет в направлении ДНК—> РНК, т. е. информация, закодированная в определенном отрезке ДНК (гене) транскрибируется, т. е. считывается, с образованием соответствующей РНК. У ретровирусов же, у которых наследуемым генетическим материалом служит РНК, происходит обратная транскрипция, т. е. генетическая информация считывается в обратном направлении: от РНК к ДНК.
Фермент, участвующий в обратной транскрипции, называется обратной транскриптазой. Он широко используется в генетической инженерии.
ВИЧ инфицирует и разрушает лейкоциты определенной группы, называемые Т-хелперными лимфоцитами, подавляя в результате активность иммунной системы.
В3 Химическое и радиоактивное загрязнение окружающей среды. «Зелёные столицы» Европы.
Представленная работа посвящена теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение поднятых вопросов. Тема "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" изучается на стыке сразу нескольких взаимосвязанных дисциплин. Для современного состояния науки характерен переход к глобальному рассмотрению проблем тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а в многочисленных монографиях по данной тематике рассмотрены более узкие вопросы проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Однако, требуется учет современных условий при исследовании проблематики обозначенной темы. Высокая значимость и недостаточная практическая разработанность проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" определяют несомненную новизну данного исследования. Дальнейшее внимание к вопросу о проблеме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" необходимо в целях более глубокого и обоснованного разрешения частных актуальных проблем тематики данного исследования. Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" в современной науке, с другой стороны, ее недостаточной разработанностью. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость. Результаты могут быть использованы для разработки методики анализа "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Теоретическое значение изучения проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" заключается в том, что избранная для рассмотрения проблематика находится на стыке сразу нескольких научных дисциплин. Объектом данного исследования является анализ условий "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". При этом предметом исследования является рассмотрение отдельных вопросов, сформулированных в качестве задач данного исследования. Целью исследования является изучение темы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" с точки зрения новейших отечественных и зарубежных исследований по сходной проблематике. В рамках достижения поставленной цели автором были поставлены и решения следующие задачи: 1. Изучить теоретические аспекты и выявить природу "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)"; 2. Сказать об актуальности проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" в современных условиях; 3. Изложить возможности решения тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)"; 4. Обозначить тенденции развития тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)"; Работа имеет традиционную структуру и включает в себя введение, основную часть, состоящую из 3 глав, заключение и библиографический список. Во введении обоснована актуальность выбора темы, поставлены цель и задачи исследования, охарактеризованы методы исследования и источники информации. Глава первая раскрывает общие вопросы, раскрываются исторические аспекты проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Определяются основные понятия, обуславливается актуальность звучание вопросов "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". В главе второй более подробно рассмотрены содержание и современные проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Глава третья имеет практический характер и на основе отдельных данных делается анализ современного состояния, а также делается анализ перспектив и тенденций развития "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". По результатам исследования был вскрыт ряд проблем, имеющих отношение к рассматриваемой теме, и сделаны выводы о необходимости дальнейшего изучения/улучшения состояния вопроса. Таким образом, актуальность данной проблемы определила выбор темы работы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)", круг вопросов и логическую схему ее построения. Теоретической и методологической основой проведения исследования явились законодательные акты, нормативные документы по теме работы. Источниками информации для написания работы по теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" послужили базовая учебная литература, фундаментальные теоретические труды крупнейших мыслителей в рассматриваемой области, результаты практических исследований видных отечественных и зарубежных авторов, статьи и обзоры в специализированных и периодических изданиях, посвященных тематике "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)", справочная литература, прочие актуальные источники информации.
Еврокомиссия учредила новую премию «Зеленая столица Европы», чтобы оценить европейские города с точки зрения экологии, состояния окружающей среды и перспектив развития экотуризма. В результате сравнения множества параметров, из 35 городов, претендовавших на получение «зеленой премии», было выбрано восемь финалистов: Амстердам, Бристоль, Копенгаген, Фрибург, Гамбург, Мюнстер, Осло и Стокгольм.
Но абсолютных победителя оказалось два: Стокгольм станет «Зеленой столицей Европы» в 2010 году и Гамбург – в 2011-м.
Столица Швеции, построенная на архипелаге из 14 островов, окружена лесопарковыми оазисами, до которых легко можно добраться из центра города благодаря очень эффективной транспортной системе. Два «зеленых сердца» Стокгольма – Дьюргарден (Djurgården) и Экопаркен (Ekoparken). Экопаркен – первый в мире городской национальный парк, площадью более 30 квадратных километров, имеет особую ценность для экологии. К 2050 году Стокгольм должен полностью перейти на альтернативные источники энергии и стать полностью независимым от невозобновляемых источников энергии, таких как газ, нефть и уголь.Второй по величине европейский порт и самый зеленый город Германии - Гамбург не случайно будет нести звание «Зеленой столицы» в 2011 году. Экологи отмечают эффективные природосберегающие технологии городского хозяйства, а туристы – обилие растений в Гамбурге. Кроме того, расположенный в городе парк Planten un Blomen, включает в себя огромный ботанический сад, тропическую оранжерею и самый обширный в Европе японский сад. А муниципальный Standpark считается самыми большим «зеленым театром» - в парке расположена открытая сцена, а также крупный планетарий.
4,простейшие,саркожгутиконосцы ,класс-жгутиковые,ЛЯМБЛИЯ Кишечная(лямблия интерстиналис).1.-ядро,2-жгутики
Билет 68
В1. Второй и третий уровень организации хромотина.
Петлевые домены ДНК - третий уровень структурной организации хроматина Расшифровка принципа строения элементарных хромосомных компонентов - нуклеосом и 30 нм фибрилл - еще мало что дает для понимания основ трехмерной организации хромосом, как в интерфазе, так и в митозе. Сорокакратное уплотнение ДНК, которое достигается при сверхспиральном характере ее компактизации, совершенно еще недостаточно для получения реального (1 х 104) уровня уплотнения ДНК. Следовательно должны существовать более высокие уровни компактизации ДНК, которые в конечном счете должны определять размеры и общие характеристики хромосом. Такие высшие уровни организации хроматина были обнаружены при искусственной его деконденсации, когда было найдено, что поддержание их связано с негистоновыми белками. В этом случае специфические белки связываются с особыми участками ДНК, которые в местах связывания образуют большие петли или домены. Как уже указывалось, сложная структура ядра или нуклеоида прокариот организована в виде иерархии петлевых доменов ДНК, связанных с небольшим количеством специальных белков.Петлевой принцип упаковки ДНК обнаруживается также и у эукариотических клеток. Так если выделенные ядра обработать 2 М NaCI, т.е. удалить все гистоны, то целостность ядра сохраняется, за исключением того, что вокруг ядра возникнет т.н. «гало», состоящее из огромного числа петель ДНК. Такая структура ядер получила название «нуклеоида». Гало состоит из огромного (до 50000) количества замкнутых на периферии петель ДНК, со средним размером петель около 60 т.п.н., основание которых закреплено где-то внутри ядра, на участках негистоновых белков. Тем самым считается, что после удаления гистонов основания петлевых доменов ДНК, связаны с т.н. «матриксом» или «скэффолдом» - негистоновым белковым остовом интерфазного ядра. Оказалось, что петлевые домены ДНК интерфазных ядер можно выделить. В выделенных ядрах в присутствии двухвалентных катионов (2 мМ Ca++ ) в хроматине ядра выявляются небольшие сгустки величиной около 100 нм, т.н. хромомеры. Если такие хромомеры препаративно выделить, а затем экстрагировать из них гистоны, то под электронным микроскопом можно видеть розетковидные петлистые структуры, где отдельные петли отходят от центрального плотного участка. Количество петель в такой розетке может составлять 15-80, а общая величина ДНК может достигать 200 т.п.н., с суммарной длиной ДНК до 50 мкм. Обработка таких розеток протеиназами приводит к исчезновению плотной центральной области розетки и к разворачиванию петель ДНК.Сходные картины можно наблюдать при разрыхлении политенных хромосом. Здесь хромомеры в виде розеток хроматина выявляются в зонах хроматиновых дисков, в то время как междисковые участки их не содержат. При деконденсации хроматина ядер некоторых растений (Allium, Haemantnus, Vicia), для которых характерна особая структура интерфазных ядер, хромомеры видны в составе хромонемных нитей.Подобные розетковидные петлистые структуры, хромомеры, можно видеть также при разрыхлении и митотических хромосом как животных, так и растений. Следовательно, хромосомные 30 нм фибриллы, состоящие из ДНК и гистонов, упаковываются в виде петлистых розетковидных структур, претерпевая еще дополнительную компактизацию. Это третий уровень структурной организации хроматина, как считается, может приводить уже к 600-кратной компактизации ДНК.Важно отметить, что размер отдельных петлевых доменов совпадает с размером среднихрепликонов и может соответствовать одному или нескольким генам. В своих основаниях петли ДНК связаны негистоновыми белками ядерного матрикса, в состав которых могут входить как ферменты репликации ДНК, так и транскрипции. Такая петельно-доменная структура хроматина обеспечивает не только структурную компактизацию хроматина, но и организует функциональные единицы хромосом - репликоны и транскрибируемые гены. Комплекс белков, участвующих в такой структурно-функциональной организации хроматина, относится к белкам ядерного матрикса. Второй уровень компактизациии - 30 нм фибрилла: Т.о первый, нуклеосомный, уровень компактизации хроматина играет как регуляторную, так и структурную роль, обеспечивая плотность упаковки ДНК приблизительно в 6-7 раз.Однако во многих электронномикроскопических исследованиях было показано, что как в митотических хромосомах, так и в интерфазных ядрах выявляются фибриллы хроматина с диаметром 30 нм. Хроматиновые фибриллы такого диаметра были видны как на ультратонких срезах после фиксации глутаровым альдегидом, так и на препаратах выделенного хроматина и выделенных хромосом в растворах, содержащих хотя бы низкие концентрации двухвалентных катионов. Все это говорило о том, что нуклеосомные цепочки хроматина каким-то специфическим образом уложены так, что возникает не хаотическая агрегация нуклеосом, а правильная нитчатая структура с диаметром 30 нм. Относительно характера упаковки нуклеосом в составе 30 нм фибриллы хроматина существует, по крайней мере, две точки зрения. Одна из них защищает, т.н. соленоидный тип укладки нуклеосом. Согласно этой модели, нить плотно упакованных нуклеосом диаметром 10 нм образует в свою очередь спиральные витки с шагом спирали около 10 нм. На один виток такой суперспирали приходится 6 нуклеосом. В результате такой упаковки возникает фибрилла спирального типа с центральной полостью, которая иногда на негативно окрашенных препаратах бывает видна как узкий «канал» в центре фибриллы. При частичном разворачивании, декомпактизации такой фибриллы и нанесении ее на подложку хорошо видно «зигзагообразное» расположение нуклеосом вдоль фибриллы. Считается, что гистон H1 обеспечивает взаимодействие между соседними нуклеосомами, не только сближая и связывая их друг с другом, но и обеспечивая кооперативную связь нуклеосом так, что образуется довольно плотная спираль из 10 нм фибриллы. Удаление, даже частичное, гистона H1 вызывает переход 30 нм фибриллы в 10 нм фибриллу, а полное удаление его вызывает разворачивание последней в структуру типа «бусин-на-нити». Такой соленоидный тип упаковки ДНК приводит к плотности упаковки равной приблизительно 40 (т.е. на каждый мкм нити приходится 40 мкм ДНК). Эти представления получили подтверждение при анализе структуры хроматина с помощью дифракции рентгеновских лучей и нейтронов. Здесь необходимо отметить, что представление о соленоидном типе укладки получены из анализа вторично конденсированного хроматина. Вначале были получены препараты хроматина в присутствии ЭДТА или выделялись в растворах низкой ионной силы в присутствии ионов магния. Во всех этих случаях первоначально хроматин деконденсировался до уровня «бусин на нити», где отсутствует или дестабилизируется контакт между нуклеосомами. Если же исследовать хроматин в составе ядер или в виде выделенных препаратов, но при поддержании определенной концентрации двухвалентных катионов (не ниже 1мМ), то можно видеть дискретность в составе 30 нм фибрилл хроматина: она состоит как бы из сближенных глобул того же размера, из нуклеомеров. В зарубежной литературе такие 30 нм глобулы или нуклеомеры получили название сверхбусин («супербиды»). Было обнаружено, что если в условиях, когда нуклеомерная структура фибрилл хроматина сохраняется, препараты хроматина подвергнуть нуклеазной обработке, то часть хроматина растворяется. При этом в раствор выходят частицы, имеющие размер около 30 нм с коэффициентом седиментации равным 45S в растворах, содержащих 1 мМ магния. Если такие выделенные нуклеомеры обработать ЭДТА, удалить ионы магния, то они разворачиваются в нуклеосомные цепочки, содержащие 6-8 нуклеосом. Таким образом, в состав одного нуклеомера входит отрезок ДНК, соответствующий 1600 парам оснований или 8 нуклеосомам. Компактность нуклеомера зависит от концентрации ионов магния и наличия гистона. Негистоновые белки в конформационных превращениях нуклеомеров не участвуют.
Таким образом основная 30 нм фибрилла хроматина представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК. Вероятно, что гистоны H1, находясь в центральной зоне этой крупной частицы, взаимодействуя друг с другом, поддерживают ее целостность. В пользу этого говорят данные о кооперативном связывании гистонов H1 в группе по 6-8 молекул. Противоречие между соленоидной и нуклеомерной моделью упаковки нуклеосом в составе фибрилл хроматина может быть снято, если принять модель нерегулярного соленоида: число нуклеосом на виток спирали не является строго постоянной величиной, что может привести к чередованию участков с большим или меньшим числом нуклеосом на виток. Нуклеомерный уровень укладки хроматина обеспечивает 40 кратное уплотнение ДНК, что важно не только для достижения целей компактизации гигантских молекул ДНК. Компактизация ДНК в составе 30 нм фибрилл хроматина может налагать дополнительные функциональные ограничения. Так было обнаружено, что в составе 30 нм фибриллы хроматина ДНК становится практически недоступной для взаимодействия с таким ферментом как метилаза ДНК. Кроме того резко падает способность хроматина связываться с РНК-полимеразой и рядом регуляторных белков. Таким образом второй уровень компактизации ДНК может играть роль фактора, инактивирующего гены.В заключении необходимо еще раз напомнить, что как нуклеосомный, так и нуклеомерный (супербидный) уровни компактизации ДНК хроматина осуществляются за счет гистоновых белков, которые участвуют не только в образовании нуклеосом, но и в их кооперативном объединении в виде фибрилл ДНП, где ДНК претерпевает дополнительную сверхспирализацию. Все остальные уровни компактизации связаны с дальнейшим характером укладки 30 нм фибрилл в новые компактизационные уровни, где ведущую роль играют негистоновые белки.
В2.---
В3 Паразитизм, как биологический феномен. Специфика среды обитания паразитов.
Всякий организм живет в определенной среде, в которой кроме него обитают и другие существа. Любое живое существо находится в тесной зависимости от окружающей среды, к обитанию в которой оно приспособилось в процессе эволюционного формирования соответствующего вида.
В отношении факторов питания всех животных можно разделить на три группы: - плотоядных, или животных, которые пожирают другие организмы или даже себе подобных (хищные); - животных, питающихся падалью, разлагающимися органическими веществами (личинки трупной мухи, комнатной мухи, некоторые млекопитающие и птицы); - животных-паразитов, которые питаются за счет соков тканей тела или переваренной пищей живых хозяев.
Хищники, нападая на добычу, убивают и пожирают ее. Паразиты же пользуются своими хозяевами многократно в течение всей жизни или жизни своих хозяев. Поэтому паразиты или вовсе не губят своего хозяина, или же не приводят к его смерти в течение продолжительного срока вследствие вызываемого ими заболевания.
Паразитизм - это форма сожительства, при которой один организм - паразит живет за счет организма другого вида - хозяина.
Паразитизм - это форма сожительства двух генетически разнородных организмов разных видов, при которой один организм (паразит) использует другого (хозяина) как источник питания и среду существования, причиняя ему вред, но, как правило, не уничтожая его.
Формы паразитизма чрезвычайно разнообразны. Различают облигатный (постоянно встречающийся, обязательный) и факультативный (возможный, необязательный), временный и постоянный, истинный и ложный, экто- и эндопаразитизм.
Паразитизм широко распространен в природе. Он встречается почти во всех типах животного царства. Особенно много паразитов имеется в типах простейших, плоских и круглых червей, членистоногих. Согласно данным В. А. Догеля (1947 г.) в природе около 60-65 тыс. видов являются животными-паразитами. Широкое распространение и разнообразие видов паразитизма позволяет считать, что эта форма сожительства возникла в природе в различных систематических группах животных независимо одна от другой.
Билет 69
В1 Структура ДНК. Модель Уотсона и Крика.
Дезоксирибонуклеи́новая кислота́ (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетическойпрограммы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.
В клетках эукариотов (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
С химической точки зрения, ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине 1962 г.
В2.Введение в тератологию. Понятие о критических периодах.
ТЕРАТОЛО́ГИЯ [тэратология], тератологии, мн. нет, жен. (греч. teras - чудовище и logos - учение).
1. Наука, изучающая врожденные уродства отдельных органов и целых организмов.
2. Стиль средневекового графического искусства (в орнаменте, заставках, инициалах и т.п.), основанный на нагромождении чудовищно-фантастических образов, то же, что звериный стиль Тератология в древнерусских рукописях.
Множество стало рождаться двуликих существ и двугрудых,
Твари бычачьей природы с лицом человека являлись,
Люди с бычачьими лбами, создание смешанных плодов;
Женской породы мужчины, с бесплодными членами твари.
(Эмпедокл)
В этом четверостишье содержатся указания на рождение сросшихся близнецов, обезображивающие пороки лица и двуполость.
В России начало исследований пороков развития человека и животных связано с именем императора Петра I,который в 1718 году издал Указ о создании в Петербурге «Музея уродливостей». Музей был размещён в специальном здании, названом Кунсткамерой.
Основу «Музея уродливостей» составляла коллекция анатомических препаратов, в том числе и уродов. В соответствии с Указом Петра I музей стал пополняться редкими препаратами уродств человека и животных.
Следует отметить, что первые научные исследования коллекции человеческих уродств в Кунсткамере стали проводиться выдающимися отечественными учёными — академиками К.Бером, К.Вольфом, П.А. Загорским. К этому времени накопились научные сведения по эмбриологии (наука о зародышевом развитии человека), сравнительной анатомии (науки о сравнительном строении тела различных видов животных) и нормальной анатомии (науки о строении тела человека).
В ХХ веке были точно установлены причины многих уродств. Так в 1941 году было обнаружено тератогенное действие вируса коревой краснухи, в 1962 году — тератогенное (производящее уродства) действие фармакологического препарата (снотворного) — талидомида. В 70-х годах ХХ столетия была открыта хромосомная (генетическая) природа многих врожденных пороков развития, связанная с наследственной патологией и лишь 3-5 % пороков индуцировано непосредственно тератогенными факторами. В настоящее время в мире успешно работают многочисленные медико-генетические лаборатории, а в ряде ведущих стран - научно-исследовательские тератологические центры.
В3
Билет 70.
1. Самовоспроизведениенаследственногоматериала.
Одним из основных свойств материала наследственности является его способность к самокопированию - репликация. Это свойство обеспечивается особенностями химической организации молекулы ДНК, состоящей из двух комплементарных цепей. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. В итоге из одной двойной спирали ДНК образуются две идентичные двойные спирали. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну материнскую и одну вновь синтезированную цепь, называют полуконсервативным.
Для осуществления репликации цепи материнской ДНК должны быть отделены друг от друга, чтобы стать матрицами, на которых будут синтезироваться комплементарные цепи дочерних молекул.
Инициация репликации осуществляется в особых участках ДНК, обозначаемых ori (от англ. origin - начало). Они включают последовательность, состоящую из 300 нуклеотидных пар, узнаваемую специфическими белками. Двойная спираль ДНК в этих локусах разделяется на две цепи, при этом, как правило, по обе стороны от точки начала репликации образуются области расхождения полинуклеотидных цепей - репликационные вилки, которые движутся в противоположных от локуса ori направлениях. Между репликационными вилками образуется структура, называемая репликационным глазком, где на двух цепях материнской ДНК образуются новые полинуклеотидные цепи С помощью фермента геликазы, разрывающего водородные связи, двойная спираль ДНК расплетается в точках начала репликации. Образующиеся при этом одинарные цепи ДНК связываются специальными дестабилизирующими белками, которые растягивают остовы цепей, делая их азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. На каждой из цепей, образующихся в области репликационной вилки, при участии фермента ДНК-полимеразы осуществляется
В процессе синтеза репликационные вилки движутся вдоль материнской спирали в противоположных направлениях, захватывая все новые зоны.
Разделение спирально закрученных цепей родительской ДНК ферментом геликазой вызывает появление супервитков перед репликационной вилкой. Это объясняется тем, что при расхождении каждых 10 пар нуклеотидов, образующих один виток спирали, родительская ДНК должна совершить один полный оборот вокруг своей оси. Следовательно, для продвижения репликационной вилки вся молекула ДНК перед ней должна была бы быстро вращаться, что потребовало бы большой затраты энергии. В действительности это не наблюдается благодаря особому классу белков, называемых ДНК-топоизомеразами. Топоизомераза разрывает одну из цепей ДНК, что дает ей возможность вращаться вокруг второй цепи. Это ослабляет накопившееся напряжение в двойной спирали ДНК. К высвобождающимся водородным связям нуклеотидных последовательностей разделенных родительских цепей присоединяются свободные нуклеотиды из нуклеоплазмы, где они присутствуют в виде дезоксирибонуклеозидгрифосфатов: дАТФ, дГТФ, дЦТФ, дТТФ. Комплементарный нуклеозидтрифосфат образует водородные связи с определенным основанием материнской цепи ДНК. Затем при участии фермента ДНК-полимеразы он связывается фосфодиэфирной связью с предшествующим нуклеотидом вновь синтезируемой цепи, отдавая при этом неорганический пирофосфат.Поскольку ДНК-полимераза присоединяет очередной нуклеотид к ОН-группе в 3'-положении предшествующего нуклеотида, цепь постепенно удлиняется на ее 3'-конце.Особенностью ДНК-полимеразы является ее неспособность начать синтез новой полинуклеотидной цепи путем простого связывания двух нуклеозидтрифосфатов: необходим 3'-ОН-конец какой-либо полинуклеотидной цепи, спаренной с матричной цепью ДНК, к которой ДНК-полимераза может лишь добавлять новые нуклеотиды. Такую полинук-леотидную цепь называют затравкой или праймером.Роль затравки для синтеза полинуклеотидных цепей ДНК в ходе репликации выполняют короткие последовательности РНК, образуемые при участии фермента РНК-праймазы (рис.11). Указанная особенность ДНК-полимеразы означает, что матрицей при репликации может служить лишь цепь ДНК, несущая спаренную с ней затравку, которая имеет свободный 3'-ОН-конец. В настоящее время установлено, что синтез второй цепи ДНК осуществляется короткими фрагментами (фрагменты Оказаки) также в направлении от 5' - к 3'-концу (по типу шитья "назад иголкой"). У прокариот фрагменты Оказаки содержат от 1000 до 2000 нуклеотидов, у эукариот они значительно короче (от 100 до 200 нуклеотидов). Синтезу каждого такого фрагмента предшествует образование РНК-затравки длиной около 10 нуклеотидов. Вновь образованный фрагмент с помощью фермента ДНК-лигазы соединяется с предшествующим фрагментом после удаления его РНК-затравки. В связи с указанными особенностями репликационная вилка является асимметричной. Из двух синтезируемых дочерних цепей одна строится непрерывно, ее синтез идет быстрее и эту цепь называют лидирующей. Синтез другой цепи идет медленнее, так как она собирается из отдельных фрагментов, требующих образования, а затем удаления РНК-затравки. Поэтому такую цепь называют запаздывающей (отстающей). Хотя отдельные фрагменты образуются в направлении 5' → 3', в целом эта цепь растет в направлении 3' → 5'. В виду того, что от локуса ori как правило начинаются две репликационные вилки, идущие в противоположных направлениях, синтез лидирующих цепей в них идет на разных цепях материнской ДНК (рис 12, Б). Конечным результатом процесса репликации является образование двух молекул ДНК, нуклеотидная последовательность которых идентична таковой в материнской двойной спирали ДНК. Рассмотренная последовательность событий, происходящих в ходе репликативного синтеза, предполагает участие целой системы ферментов: геликазы, топоизомеразы, дестабилизирующих белков, ДНК-полимеразы и других, совместно действующих в области репликационной вилки (рис 13).Репликация ДНК у про- и эукариот в основных чертах протекает сходно, однако, скорость синтеза у эукариот (около 100 нуклеотидов/с) на порядок ниже, чем у прокариот (1000 нуклеотидов/с). Причиной этого может быть образование ДНК эукариот достаточно прочных соединений с белками, что затрудняет ее деспирализацию, необходимую для осуществления репликативного синтеза.
Фрагмент ДНК от точки начала репликации до точки ее окончания образует единицу репликации - репликон. Однажды начавшись в точке начала (локус on), репликация продолжается до тех пор, пока весь репликон не будет дуплицирован. Кольцевые молекулы ДНК прокариотических клеток имеют один локус on и представляют собой целиком отдельные репликоны. Эукариотические хромосомы содержат большое число репликонов. В связи с этим удвоение молекулы ДНК, расположенной вдоль эукариотической хромосомы, начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.
2. Периоды онтогенеза человека. Пренатальное и постнатальное развитие.
Онтогенез человека делится на несколько крупных периодов, которые свойственны развитию всех многоклеточных существ и особенно высших животных, сходных с человеком. Прежде всего это эмбриогенез, т. е. тот период развития,который проходит у человека в утробе матери под защитой специального барьерного органа — плаценты. В свою очередь эмбриогенез, длящийся 9 мес , состоит из нескольких принципиальных этапов. Первый этап связан с оплодотворением, т. е.с самим фактом встречи родительских половых клеток. В это время зародышевые клетки подвержены влиянию естественногоотбора, так как далеко не все родительские клетки способны к дальнейшему развитию. Второй этап, с которого начинается эмбриогенез, — это превращение одной клетки — оплодотворенного яйца — в многоклеточный организм (дробление). Третий этап связан с началом дифференциации (специализации) клеток в организме и знаменуется появлением в нем трех первичных типов тканей. При этом в зародыше происходит перемещение клеточных пластов, а затем начинается этап органогенеза, т. е. закладка и образование различных органов и систем организма, характеризуемый сложными явлениями дифференциации клеток и объединением их в структуры. К двум месяцам развития складывается защитная система материнского организма — плацента, которая в дальнейшем и питает, и защищает развивающийся плод. В остальные семь месяцев развития человекапод защитой плаценты его органы приобретают функциональную активность и быстро растут. Значительным и драматичным для человеческого организма является появление на свет, т. е. роды. Этот период также подвержен действию естественного отбора: не все зародыши благополучно доходят до конца эмбриогенеза и благополучно рождаются на свет. Далее наступает период детства, первым этапом которого является грудное вскармливание, когда в течение года особенно важным для человека является фактор питания. За это время происходят большие изменения в нервной системе, созревают рецепторные системы (органы чувств), у ребенка закладывается интуитивный образ мира. Следующий этап детства продолжается до шести-семи лет, когда окончательно созревает нервная система и вместе с ней способность к познанию окружающего мира. Увеличивается количество извилин в коре больших полушарий головного мозга, ребенок активно обучается, у него созревают условно-рефлекторные связи, т. е. в нервных связях запечатлевается жизненный опыт. Период детства сменяется препубертатным периодом, когда начинается и постепенно на протяжении нескольких лет происходит созревание эндокринной системы, завершающееся наступлением юношеского периода, когда у подростка созревает репродуктивная система и половые гормоны включаются в эндокринную систему регуляции организма. Таким образом, нервная система и эндокринная система, т. е. две координирующие системы организма, окончательно созревают уже после рождения ребенка. Все эти сложные процессы роста и созревания завершаются в среднем к 18 годам у женщин и к 20—21 году у мужчин, после чего следует длительный репродуктивный период — период мощной и согласованной работы всех систем организма. Это период воспроизведения, размножения и наивысшей работоспособности человеческого организма во всех отношениях. После завершения репродуктивного периода (у женщин к 45—50 годам, у мужчин — несколько позже) начинается переход к периоду старения, в котором принято выделять несколько стадий: климакс, пожилой возраст и долгожительство, начинающееся в наше время после 90 лет. Созревание, согласованная работа и последующее старение у людей различных рас приходятся на несколько разный астрономический возраст. Вместе с тем возрастные характеристики связаны с состоянием окружающей человека среды. Ряд факторов среды обитания способствуют как более раннему созреванию, так и более раннему старению человеческого организма. В онтогенезе человека, как и других живых существ, выделяют некоторые моменты, которые принято называть «критическими», т. е. наиболее чувствительными к повреждающим факторам и условиям среды. Так, первый период онтогенеза, связанный с оплодотворением, размножением, перемещением клеток, органогенезом, безусловно, является критическим. Также и после рождения переход от каждого очередного периода онтогенеза к последующему связан с изменениями в управляющих системах организма, следовательно, является критическим. Все эти «чувствительные точки» являются возрастными мишенями для действия стрессорных факторов окружающей среды. По данным медицинской статистики соответствующие возрастные группы людей характеризуются повышенной заболеваемостью и смертностью. Человеческая популяция, для того чтобы воспроизводиться полноценно, должна подвергаться воздействию фильтра — естественного отбора, который отметает, приводит к гибели наименее жизнеспособные особи. Наиболее результативно действие естественного отбора происходит именно в те моменты, которые были названы критическими периодами. В частности, из всех оплодотворенных яйцеклеток у человека до конца эмбрионального периода доходит не больше половины. Подверженными влиянию естественного отбора оказываются зародыши, несущие какие-либо летальные гены, а также те или иные уродства.
3. Факторы, влияющие на изменение климата.
Изменение климата — колебания климатаЗемли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, по одной из версий, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется как правило (особенно в контексте экологической политики) для обозначения изменения в современном климате (см. глобальное потепление).
Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, — это изменения солнечной радиации и орбиты Земли.
изменение размеров и взаимного расположения материков и океанов,
изменение светимости солнца,
изменения параметров орбиты Земли,
изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,
изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,
изменение отражательной способности поверхности Земли (альбедо),
изменение количества тепла, имеющегося в глубинах океана.
Климатические изменения на Земле
Погода — это ежедневное состояние атмосферы. Погода является хаотичной не линеарной динамической системой. Климат — это усредненное состояние погоды и он, напротив, стабилен и предсказуем. Климат включает в себя такие показатели как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.
Билет 71
1.МеханизмысохранениянуклеогиднойпоследовательностиДНК. Химическаястабильность. Репликация. Репараци. Дляподдержанияглавныххарактеристикклеткиилиорганизманапротяженииихжизни, атакжеврядупоколенийнаследственныйматериалдолженотличатьсяустойчивостьюквнешнимвоздействиямилидолжнысуществоватьмеханизмыкоррекциивозникающихвнемизменений. Вживойприродеиспользуютсяобафактора. ТретьимфакторомявляетсяточностькопированиянуклеотидныхпоследовательностейматеринскойДНКвпроцессееерепликации. ДНК-геликазарасплетаетдвойнуюспиральДНК, разделяяееполинуклеотидныецепи; дестабилизирующиебелкивыпрямляютучастокцепиДНК; ДНК-топоизомеразаразрываетфосфодиэфирнуюсвязьводнойизполинуглеотидныхцепейДНК, снимаянапряжение, вызываемоерасплетенисмспиралиирасхождениемцепейврепликационнойвилке; РНК-праймазасинтезируетРНК-затравкидлядочернейцепиидлякаждогофрагментаОказаки; ДНК-полимеразаосуществляетнепрерывныйсинтезлидирующейцепиисинтезфрагментовОказакиотстающейцепи; ДНК-лигазасшиваетфрагментыОказакипослеудаленияРНК-затравкиПореакционнойспособностимолекулыДНКотносятсяккатегориихимическиинертныхвеществ. Известно, чторольвеществанаследственностиможетвыполнятьнетолькоДНК, ноиРНК (некоторыевирусы). Считают, чтовыборвпользуДНКобусловленееболеенизкойпосравнениюсРНКреакционнойспособностью.РассмотренныйвышемеханизмрепликацииотличаетсячрезвычайновысокойточностьювоспроизведенияструктурыДНК. ПриудвоенииДНКошибкивозникаютвсреднемсчастотой 1·10-6 комплементарныхпароснований.ВподдержаниивысокойточностирепликацииважнаярольпринадлежитпреждевсегоферментуДНК-полимеразе. Этотферментосуществляетотборнеобходимыхнуклеотидовизчислаимеющихсявядерномсокенуклеозидтрифосфатов (АТФ, ТТФ, ГТФ, ЦТФ), точноеприсоединениеихкматричнойцепиДНКивключениеврастущуюдочернююцепь. Частотавключениянеправильныхнуклеотидовнаэтойстадиисоставляет 1·10-5 пароснований.ТакиеошибкивработеДНК-полимеразысвязанысвозникновениемизмененныхформазотистыхоснований, которыеобразуют "незаконные" парысоснованиямиматеринскойцепи. Например, измененнаяформацитозинавместогуанинасвязываетсяводороднымисвязямисаденином. ВрезультатеврастущуюцепьДНКвключаетсяошибочныйнуклеотид. Быстрыйпереходизмененнойформытакогооснованиявобычнуюнарушаетегосвязываниесматрицей, появляетсянеспаренный 3'-ОН-конецрастущейцепиДНК. Вэтойситуациивключаетсямеханизмсамокоррекции, осуществляемыйДНК-полимеразой (илитесносвязаннымснейферментом - редактирующейэндонуклеазой). СамокоррекциязаключаетсявотщепленииошибочновключенноговцепьДНКнуклеотида, неспаренногосматрицей (рис.14). Следствиемсамокоррекцииявляетсяснижениечастотыошибокв 10 раз (с 10-5 до 10-6). Несмотрянаэффективностьсамокоррекции, входерепликациипослеудвоенияДНКвнейобнаруживаютсяошибки. Особенночастоэтонаблюдаетсяпринарушенииконцентрациичетырехнуклеозидтрифосфатоввокружающемсубстрате. ЗначительнаячастьизмененийвозникаеттакжевмолекулахДНКврезультатеспонтаннопроисходящихпроцессов, связанныхспотерейпуриновыхоснований - аденинаигуанина (апуринизацией) - илидезаминированиемцитозина, которыйпревращаетсявурацил. Частотапоследнихизмененийдостигает100 на 1 геном/сут. СодержащиесявДНКоснованиямогутизменятьсяподвлияниемреакционноспособныхсоединений, нарушающихихнормальноеспаривание, атакжеподдействиемультрафиолетовогоизлучения, котороеможетвызватьобразованиековалентнойсвязимеждудвумясоседнимиостаткамитиминавДНК (димерытимина). НазванныеизменениявочередномциклерепликациидолжныпривестилибоквыпадениюпароснованийвдочернейДНК, либокзаменеоднихпардругими. УказанныеизменениядействительносопровождаюткаждыйциклрепликацииДНК, однакоихчастотазначительноменьше, чемдолжнабылабыбыть. Этообъясняетсятем, чтобольшинствоизмененийтакогородаустраняетсяблагодарядействиюмеханизмарепарации (молекулярноговосстановления) исходнойнуклеотиднойпоследовательностиДНК.МеханизмрепарацииоснованнаналичиивмолекулеДНКдвухкомплементарныхцепей. Искажениепоследовательностинуклеотидовводнойизнихобнаруживаетсяспецифическимиферментами. Затемсоответствующийучастокудаляетсяизамещаетсяновым, синтезированнымнавторойкомплементарнойцепиДНК. Такуюрепарациюназываютэксцизионной, т.е. с "вырезанием" (рис.15). Онаосуществляетсядоочередногоцикларепликации, поэтомуееназываюттакжедорепликативной.ВосстановлениеисходнойструктурыДНКтребуетучастиярядаферментов. ВажныммоментомвзапускемеханизмарепарацииявляетсяобнаружениеошибкивструктуреДНК. Нередкотакиеошибкивозникаютвовновьсинтезированнойцепивпроцессерепликации. Ферментырепарациидолжныобнаружитьименноэтуцепь. УмногихвидовживыхорганизмоввновьсинтезированнаяцепьДНКотличаетсяотматеринскойстепеньюметилированияееазотистыхоснований, котороеотстаетотсинтеза. Репарацииприэтомподвергаетсянеметилированнаяцепь. ОбъектомузнаванияферментамирепарациимогуттакжеслужитьразрывывцепиДНК. Увысшихорганизмов, гдесинтезДНКпроисходитненепрерывно, аотдельнымирепликонами, вновьсинтезируемаяцепьДНКимеетразрывы, чтоделаетвозможнымееузнавание. ВосстановлениеструктурыДНКприутратепуриновыхоснованийоднойизеецепейпредполагаетобнаружениедефектаспомощьюферментаэндонуклеазы, котораяразрываетфосфоэфирнуюсвязьвместеповрежденияцепи. Затемизмененныйучастокснесколькимипримыкающимикнемунуклеотидамиудаляетсяферментомэкзонуклеазой, анаегоместевсоответствииспорядкомоснованийкомплементарнойцепиобразуетсяправильнаянуклеотиднаяпоследовательность (рис.15). ПриизмененииодногоизоснованийвцепиДНКввосстановленииисходнойструктурыпринимаютучастиеферментыДНК-гликозилазычисломоколо 20. Ониспецифическиузнаютповреждения, обусловленныедезаминированием, алкилированиемидругимиструктурнымипреобразованиямиоснований. Такиемодифицированныеоснованияудаляются. Возникаютучастки, лишенныеоснований, которыерепарируются, какприутратепуринов. Есливосстановлениенормальнойструктурынеосуществляется, напримервслучаедезаминированияазотистыхоснований, происходитзаменаоднихпаркомплементарныхоснованийдругими - параЦ-ГможетзаменятьсяпаройТ-Аит.п. . ОбразованиевполинуклеотидныхцепяхподдействиемУФ-лучейтиминовыхдимеров (Т-Т) требуетучастияферментов, узнающихнеотдельныеизмененныеоснования, аболеепротяженныеповрежденияструктурыДНК. Репаративныйпроцессвэтомслучаетакжесвязансудалениемучастка, несущегодимер, ивосстановлениемнормальнойпоследовательностинуклеотидовпутемсинтезанакомплементарнойцепиДНК. Втомслучае, когдасистемаэксцизионнойрепарациинеисправляетизменения, возникшеговоднойцепиДНК, входерепликациипроисходитфиксацияэтогоизмененияионостановитсядостояниемобеихцепейДНК. Этоприводиткзаменеоднойпарыкомплементарныхнуклеотидовнадругуюлибокпоявлениюразрывов (брешей) вовновьсинтезированнойцепипротивизмененныхучастков. ВосстановлениенормальнойструктурыДНКприэтомможетпроизойтиипослерепликации. Пострепликативнаярепарацияосуществляетсяпутемрекомбинации (обменафрагментами) междудвумявновьобразованнымидвойнымиспиралямиДНК. ПримеромтакойпострепликативнойрепарацииможетслужитьвосстановлениенормальнойструктурыДНКпривозникновениитиминовыхдимеров (Т-Т), когдаонинеустраняютсясамопроизвольноподдействиемвидимогосвета (световаярепарация) иливходедорепликативнойэксцизионнойрепарации. Ковалентныесвязи, возникающиемеждурядомстоящимиостаткамитимина, делаютихнеспособнымиксвязываниюскомплементарныминуклеотидами. ВрезультатевовновьсинтезируемойцепиДНКпоявляютсяразрывы (бреши), узнаваемыеферментамирепарации. ВосстановлениецелостностиновойполинуклеотиднойцепиоднойиздочернихДНКосуществляетсяблагодарярекомбинацииссоответствующейейнормальнойматеринскойцепьюдругойдочернейДНК. Образовавшийсявматеринскойцепипробелзаполняетсязатемпутемсинтезанакомплементарнойейполинуклеотиднойцепи (рис.16). Проявлениемтакойпострепликативнойрепарации, осуществляемойпутемрекомбинациимеждуцепямидвухдочернихмолекулДНК, можносчитатьнередконаблюдаемыйобменматериаломмеждусестринскимихроматидами (рис.17). ВходедорепликативнойипострепликативнойрепарациивосстанавливаетсябольшаячастьповрежденийструктурыДНК. Однако, есливнаследственномматериалеклеткивозникаетслишкоммногоповрежденийичастьизнихнеликвидируется, включаетсясистемаиндуцируемых (побуждаемых) ферментоврепарации (SOS-система). Этиферментызаполняютбреши, восстанавливаяцелостностьсинтезируемыхполинуклеотидныхцепейбезточногособлюденияпринципакомплементарности. ВотпочемуиногдасамипроцессырепарациимогутслужитьисточникомстойкихизмененийвструктуреДНК (мутаций). Названнаяреакциятакжеотноситсяк SOS-системе.Есливклетке, несмотрянаосуществляемуюрепарацию, количествоповрежденийструктурыДНКостаетсявысоким, внейблокируютсяпроцессырепликацииДНК. Такаяклетканеделится, азначит, непередаетвозникшихизмененийпотомству.ВызываемаяповреждениямиДНКостановкаклеточногоциклавсочетаниисневозможностьюмолекулярнойрепарацииизмененногонаследственногоматериаламожетсучастиембелка, синтезкоторогоконтролируетсягеномр53, приводитькактивациипроцессасамоликвидации (апотпоз) дефектнойклеткисцельюустраненияееизорганизма.Такимобразом, обширныйнаборразличныхферментоврепарацииосуществляетнепрерывный "осмотр" ДНК, удаляяизнееповрежденныеучасткииспособствуяподдержаниюстабильностинаследственногоматериала. Совместноедействиеферментоврепликации (ДНК-полимеразаиредактирующаяэндонуклеаза) иферментоврепарацииобеспечиваетдостаточнонизкуючастотуошибоквмолекулахДНК, котораяподдерживаетсянауровне 1 · 10-9паризмененныхнуклеотидовнагеном. Приразмерегеномачеловека 3 · 109нуклеотидныхпарэтоозначаетпоявлениеоколо 3 ошибокнареплицирующийсягеном. ВместестемдажеэтотуровеньдостаточендляобразованиязавремясуществованияжизнинаЗемлезначительногогенетическогоразнообразияввидегенныхмутаций.
2. Классификация генов человека по структуре и функциям.
Ген представляет собой последовательность нуклеотидов ДНК размером от нескольких сотен до миллиона пар нуклеотидов, в которых закодирована генетическая информация о первичной структуре белка (число и последовательность аминокислот). Для регулярного правильного считывания информации в гене должны присутствовать: кодон инициации, множество смысловых кодонов и кодон терминации. Три подряд расположенных нуклеотида представляют собой кодон, который и определяет, какая аминокислота будет располагаться в данной позиции в белке. Например, в молекуле ДНК последовательность оснований ТАС является кодоном для аминокислоты метионина, а последовательность ТТТ кодирует фенилаланин. В молекуле иРНК вместо тимина (Т) присутствует основание урацил (У). Таблица генетического кода во всех руководствах представлена именно символами иРНК. Из 64 возможных кодонов смысловыми являются 61, а три триплета — УАА, УАГ, УГА — не кодируют аминокислоты и поэтому были названы бессмысленными, однако на самом деле они представляют собой знаки терминации трансляции. Для прокариот характерна относительно простая структура генов. Так, структурный ген бактерии, фага или вируса, как правило, контролирует одну ферментативную реакцию. Специфичным для прокариот является оперонная система организации нескольких генов. Гены одного оперона (участка генетического материала, состоящего из 1, 2 и более сцепленных структурных генов, которые кодируют белки (ферменты), осуществляющие последовательные этапы биосинтеза какого-либо метаболита; в оперон эукариот входит, как правило, 1 структурный ген; оперон содержит регуляторные элементы) расположены в кольцевой хромосоме бактерии рядом и контролируют ферменты, осуществляющие последовательные или близкие реакции синтеза (лактозный, гистидиновый и др. опероны). Структура генов у бактеориофагов и вирусов в основном схожа с бактериями, но более усложнена и сопряжена с геномом хозяев. Например, у фагов и вирусов обнаружено перекрывание генов, а полная зависимость вирусов эукариот от метаболизма клетки-хозяина привела к появлению экзон-интронной структуры генов. Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами). Экзон [от англ. ex(divssi)on — выражение, выразительность] - участок гена, несущий информацию о первичной структуре белка. В гене экзоны разделены некодирующими участками — интронами. Интрон (от лат. inter — между) - участок гена, не несущий информацию о первичной структуре белка и расположенный между кодирующими участками — экзонами. В результате структурные гены эукариот имеют более длинную нуклеотидную последовательность, чем соответствующая зрелая иРНК, последовательность нуклеотидов в которой соответствует экзонам. В процессе транскрипции информация о гене списывается с ДНК на промежуточную иРНК, состоящую из экзонов и интронов. Затем специфические ферменты — рестриктазы — разрезают эту про-иРНК по границам экзон-интрон, после чего экзонные участки ферментативно соединяются вместе, образуя зрелую иРНК (так называемый сплайсинг). Количество интронов может варьировать в разных генах от нуля до многих десятков, а длина — от нескольких пар оснований до нескольких тысяч. Ген может кодировать различные РНК-продукты путем изменения инициирующих и терминирующих кодонов, а также альтернативного сплайсинга. Альтернативная экспрессия гена осуществляется и путем использования различных сочетаний экзонов в зрелой иРНК, причем полипептиды, синтезированные на таких иРНК, будут различаться как по количеству аминокислотных остатков, так и по их составу. Наряду со структурными и регуляторными генами обнаружены участки повторяющихся нуклеотидных последовательностей, функции которых изучены недостаточно, а также мигрирующие элементы (мобильные гены), способные перемещаться по геному. Найдены также так называемые псевдогены у эукариот, которые представляют собой копии известных генов, расположенные в других частях генома и лишенные интронов или инактивированные мутациями. 3. Классификация генов Накопленные знания о структуре, функциях, характере взаимодействия, экспрессии, мутабильности и других свойствах генов породили несколько вариантов классификации генов. По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями. По функциональному значению различают структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены — последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.). По влиянию на физиологические процессы в клетке различают летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др. Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены — супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов. Мутации в генах приводят к измененному синтезу белковых продуктов и нарушению биохимических или физиологических процессов. Гомеозисные мутации у дрозофилы позволили открыть существование генов, нормальной функцией которых является выбор или поддержание определенного пути эмбрионального развития, по которому следуют клетки. Каждый путь развития характеризуется экспрессией определенного набора генов, действие которых приводит к появлению конечного результата: глаза, голова грудь, брюшко, крыло, ноги и т. д. Исследования генов комплекса bithorax дрозофилы американским генетиком Льюисом показали, что это гигантский кластер тесно сцепленных генов, функция которых необходима для нормальной сегментации груди (thorax) и брюшка (abdomen). Подобные гены получили название гомеобоксных. Гомеобоксные гены расположены в ДНК группами и проявляют свое действие строго последовательно. Такие гены обнаружены и у млекопитающих, и они имеют высокую гомологию (сходство). 4. Функции генов В процессе реализации наследственной информации, заключенной в гене, проявляется целый ряд его свойств. Определяя возможность развития отдельного качества, присущего данной клетке или организму, ген характеризуется дискретностью действия (от лат. discretus — разделенный, прерывистый), прерывностью (интроны и экзоны). Дискретность наследственного материала, предположение о которой высказал еще Г. Мендель, подразумевает делимость его на части, являющиеся элементарными единицами, - гены. В настоящее время ген рассматривают как единицу генетической функции. Он представляет собой минимальное количество наследственного материала, которое необходимо для синтеза тРНК, рРНК или полипептида с определенными свойствами. Ген несет ответственность за формирование и передачу по наследству отдельного признака или свойства клеток, организмов данного вида. Кроме того, изменение структуры гена, возникающее в разных его участках, в конечном итоге приводит к изменению соответствующего элементарного признака. Ввиду того что в гене заключается информация об аминокислотной последовательности определенного полипептида, его действие является специфичным. Однако в некоторых случаях одна и та же нуклеотидная последовательность может детерминировать синтез не одного, а нескольких полипептидов. Это наблюдается в случае альтернативного сплайсинга у эукариот и при перекрывании генов у фагов и прокариот. Очевидно, такую способность следует оценить как множественное, или плейотропное, действие гена (хотя традиционно под плейотропным действием гена принято понимать участие его продукта – полипептида – в разных биохимических процессах, имеющих отношение к формированию различных сложных признаков). Например, участие фермента в ускорении определенной реакции (см. рис.), которая является звеном нескольких биохимических процессов, делает зависимыми результаты этих процессов от нормального функционирования гена, кодирующего этот белок. Нарушение реакции A→B, катализируемой белком α, в результате мутации гена ведет к выключению последующих этапов формирования признаков D и E. α D A B C E Определяя возможность транскрибирования мРНК для синтеза конкретной полипептидной цепи, ген характеризуется дозированностью действия, т.е. количественной зависимостью результата его экспрессии от дозы соответствующего аллеля этого гена. Примером может служить зависимость степени нарушения транспортных свойств гемоглобина у человека при серповидно-клеточной анемии от дозы аллеля НЬS. Наличие в генотипе человека двойной дозы этого аллеля, приводящего к изменению структуры β-глобиновых цепей гемоглобина, сопровождается грубым нарушением формы эритроцитов и развитием клинически выраженной картины анемии вплоть до гибели. У носителей только одного аллеля НЬS при нормальном втором аллеле лишь незначительно изменяется форма эритроцитов и анемия не развивается, а организм характеризуется практически нормальной жизнеспособностью.
3.- Растения с преимущественным действием на центральную нервную систему, которое проявляется в виде повышенного возбуждения, усиления кровообращения и дыхания, появления судорог или, наоборот, затрудненности произвольных движений, понижения общей чувствительности и т.д. (отравления дурманом, беленой, полынью, вехом, плевелом опьяняющим, пикульником). Чемерица зеленая или обыкновенная (ч. Лобеля) – Veratrum Lobelianum Bernh.
Многолетнее растение семейства лилейных (Liliaceae). В диком виде произрастает в Новгородской, Псковской областях. Растет по сырым лугам, берегам озер и рек. Высота растений достигает до 80 см. Стебель прямой с многочисленными листьями, нижние округло-овальные до 10 см в длину, а верхние сужаются до ланцетных. Начало отрастания побегов весной отмечено 20 апреля, к середине мая начинается бутонизация и цветение, которое продолжается до конца июля. Цветки собраны в соцветие – пирамидальную метелку. Плод – коробочка яйцевидной формы, семена сплюснутые. Во всех органах содержатся сильно ядовитые алкалоиды протовиратрин, вератрин и др., которые вначале возбуждают, а затем парализуют ЦНС. Свойства ядовитости не снижаются при высыхании растений, вызывая раздражение слизистых оболочек глаз, рта и верхних дыхательных путей. Особенно ядовиты растения в молодом возрасте. Случаи отравления детей как раз больше всего отмечаются ранней весной при собирании сочных листьев несколько напоминающих лук-черемшу.