- •Введение
- •Раздел I Методические указания по выполнению расчётных графических работ
- •1.1 Общие требования
- •1.2 Задания для выполнения расчётной графической работы
- •Варианты заданий для выполнения расчетно-графической работы
- •Исходные данные для решения задачи
- •Решение:
- •Построение структурно-логической схемы развития аварии («Дерево событий») для лвж, гж
- •1.3.2. Расчёт вероятности развития аварии по каждому сценарию
- •1.3.3 Расчёт условной вероятности поражения человека в результате воздействия поражающих факторов
- •1.3.3 (А) Расчёт параметров волны давления при сгорании газопаровоздушной смеси в открытом пространстве (Приложение 2)
- •1.3.3(Б) Расчёт интенсивности теплового излучения «огненного шара» (Приложение 3)
- •1.3.3 (В) Расчёт интенсивности теплового излучения от пожаров пролива лвж, гж или суг (Приложение 4)
- •1.3.3 (Г) Определение значений пробит-функций Рr
- •Расчёт интенсивности теплового излучения от пожаров пролива лвж, гж или суг (Приложение 4)
- •Определение значений пробит-функций Рr
- •Расчет величины индивидуального риска
- •Раздел II Основные понятия теории техногенного риска
- •Раздел III Определение вероятностных показателей риска и их характеристика с помощью специализированного программного обеспечения
- •Порядок использования программного обеспечения при проведении занятий в специальном классе для подготовки должностных лиц и специалистов в области го и рсчс.
- •1. Выбор объекта
- •2. Расчёт взрывов и пожаров по объекту
- •7. Расчёт с учётом дрейфа
- •8. Расчёт рисков при авариях на объектах
- •Примеры графических результатов расчёта рисков:
- •Список используемой литературы
- •Построение структурно-логической схемы развития аварии («Дерево событий»)
- •Расчёт условной вероятности поражения человека при развитии аварии по различным сценариям
- •Значения условной вероятности поражения человека в зависимости от Рr
- •Расчёт величины индивидуального риска
- •Расчет параметров волны давления при сгорании газо-паровоздушной смеси в открытом пространстве
- •Расчёт интенсивности теплового излучения «огненного шара»
- •Расчёт интенсивности теплового излучения для пожара пролива лвж, гж или суг
- •Результаты расчета последствий взрыва и пожара топливно-воздушных смесей
- •Комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности на ликвидацию последствий аварии на
- •Решила:
- •Начальник Управления гочс Иванов и.И.
- •Донесение об угрозе (прогнозе) чрезвычайной ситуации
- •Донесение о факте и основных параметрах чрезвычайной ситуации
- •Начальник Управления Иванов и. И. ______________________________________
- •Результаты последствий пожара лвж и гж (Огненный шар (вниипо))
- •Результаты последствий пожара лвж и гж (горение разлива в обваловании)
- •Результаты последствий пожара лвж и гж (Огневой шар (мчс))
- •Результаты последствий пожара лвж и гж (горение в емкости)
- •Результаты последствий пожара лвж и гж (горение разлива за пределами обвалования)
Расчёт интенсивности теплового излучения от пожаров пролива лвж, гж или суг (Приложение 4)
Расчет интенсивности теплового излучения пожара пролива производим в соответствии с методикой, представленной в Приложении 4.
а) Определяем площадь пролива (м2):
б) Определяем эффективный диаметр пролива d (м):
в) Определяем высоту пламени Н (м), принимая m’=0,1 кг/(м2с) (табл. П4.1), а=1,2 кг/м3, g=9,81 м/с2:
г) Определяем угловой коэффициент облученности Fq:
где
д) Определяем коэффициент пропускания атмосферы :
Полученные значения Ef, Fq и t подставляем в формулу (П4.1) и находим значение интенсивности теплового излучения q:
Определение значений пробит-функций Рr
Для полученных значений параметров поражающих факторов определяем величины пробит - функций Рr по формулам, приведенным в Приложении 2, 3, 4.
Для указанных значений пробит - функции условная вероятность поражения человека поражающими факторами в соответствии с данными табл. П2.2 равна:
Расчет величины индивидуального риска
Величину индивидуального риска для человека, находящегося на расстоянии 500 м от источника аварии определяем по формуле (П2.2) (Приложение 2):
Ответ: Значение индивидуального риска при разгерметизации резервуара с пропаном для человека, находящегося на расстоянии 500 м от источника опасности, составляет 3,3 . 10-5 год-1, что недопустимо выше предела пожарного риска в 33 раза.
Раздел II Основные понятия теории техногенного риска
Центральное место в теории техногенного риска занимают понятия опасность и риск. Опасность (в зарубежной литературе «hazard») – это источник потенциального вреда или ситуация с потенциальной возможностью нанесения вреда. Опасности неизбежно сопутствуют жизнедеятельности человека. Риск – это вероятность того, что источник потенциального вреда (ущерба) может негативно воздействовать на человека и среду его обитания.
Риск аварии – это мера опасности, характеризующая возможность возникновения аварии на опасном производственном объекте и тяжесть ее последствий.
Основу современной теории риска, т.е. теории оценивания степени потенциальной опасности промышленных объектов, составляют количественные и качественные методы идентификации источников опасности и оценка масштабов их возможного воздействия – анализ и оценка риска.
Основным результатом проведения оценки и анализа техногенного риска является определение таких количественных показателей как:
индивидуальный риск – частота поражения отдельного человека в результате воздействия исследуемых факторов опасности аварий;
потенциальный территориальный риск (или потенциальный риск) частота реализации поражающих факторов аварии в рассматриваемой точке территории (рис. 2.1);
коллективный риск – ожидаемое количество пораженных в результате возможных аварий за определенный период времени;
социальный риск, или F/N кривая – зависимость частоты возникновения событий F, в которых пострадало на определенном уровне не менее N человек, от этого числа N. Характеризует тяжесть последствий (катастрофичность) реализации опасностей (рис. 2.2).
Величины количественных показателей индивидуального, социального, коллективного и потенциального риска в настоящее время являются основными характеристиками, определяемыми при декларировании безопасности объектов и территорий субъектов РФ.
Определение соответствия количественных показателей риска, полученных в ходе оценки и анализа риска аварии на объекте, величинам приемлемого риска, закрепленным в государственных стандартах является основным этапом при обосновании решений, касающихся обеспечения безопасности. Величины приемлемого риска являются строго индивидуальными для каждой из областей обеспечения безопасности.
|
Рис. 2.1. Распределение
потенциального риска по территории
вблизи объекта, на котором возможны
аварии с крупным выбросом токсичных
веществ. Цифрами у изолиний показано
значение частоты гибели человека
(год-1),
|
В частности, при проведении анализа пожарной опасности технологических процессов, требования по пожарной безопасности технологического процесса являются безусловно выполненными, если индивидуальный риск меньше 10-8 год-1, социальный риск меньше 10-7 год-1. Эксплуатация технологических процессов является недопустимой, если индивидуальный риск больше 10-4 год-1 или социальный риск меньше 10-5 год-1.
|
Рис. 2.2. Интегральная функция распределения числа погибших при аварии на нефтеперекачивающей станции с резервуарным парком (F/N-кривая). |

– зона
недопустимого риска;
– зона жёсткого контроля риска;
– зона приемлемого
риска. А – граница зон поражения
людей, рассчитанных для сценариев
аварии с одинаковой массой выброса
по всем направлениям ветра, Б – зона
поражения для отдельного сценария
при заданном направлении ветра.