
- •Что такое нанотехнология в контексте научно-технического направления?
- •Каковы особенности материалов нанометрового масштаба?
- •Какова современная классификация нанотехнологии?
- •Каковы особенности технологии наноматериалов как одного из направлений нанотехнологии?
- •Как меняется роль поверхности при уменьшении размеров частиц и почему?
- •Назовите основные методы получения ультрадисперсных частиц.
- •Как получают наноматериалы с помощью механического измельчения и диспергирования в жидкой фазе?
- •Как получают наноматериалы с помощью методов, основанных на процессах испарения и конденсации?
- •В чем суть метода получения наноматериалов с помощью термического разложения?
- •Назовите особенности детонационного синтеза алмазов и ударно-волнового синтеза керамических материалов.
- •Сформулируйте основные закономерности образования нанокристаллических частиц при конденсации.
- •Каковы характеристики наночастиц, получаемых методом испарения- конденсации?
- •В чем состоят особенности работы установок, использующих принцип испарения-конденсаци?
- •В чем состоят особенности работы установок, использующих принцип испарения-конденсаци?
- •Как получают высокодисперсные порошки методом плазмохимического синтеза?
- •Каковы основные моменты газофазного синтеза метода получения молекулярных кластеров?
- •Назовите основные схемы ударно-волнового нагружения.
- •Каково назначение устройств плоского нагружения. Каковы особенности ударных волн при плоском нагружении?
- •Каково назначение сферических устройств? Что собой представляет фронт ударных волн при сферическом нагружении?
- •Как синтезируют новые материалы в ударной волне в системе металл – жидкость?
- •Каковы основы синтеза алмазных частиц при ударно-волновой обработке смесей графита с металлами?
- •Каковы отличия детонации конденсированных взрывчатых веществ с отрицательным кислородным балансом?
- •Сформулируйте условия, необходимые для детонационного синтеза алмазных частиц.
- •Как получают нанопорошки оксидов?
- •Какие стадии выделяют в процессе детонационного синтеза алмазных частиц?
- •Какие вещества называются взрывчатыми?
- •Как классифицируют взрывчатые вещества?
- •Перечислите вредные факторы взрывчатых веществ.
- •Какие понятия используются для характеристики свойств вв?
- •В каких областях применяются взрывчатые вещества?
- •31. В каких направлениях развивается применение вв в качестве энергоносителя при прессовании некомпактных материалов?
- •32. Какие механизмы компактирования рассматриваются при взрывном прессовании?
- •33. В чем сходство и отличие сварки взрывом и сварки трением?
- •34. Как осуществляется взрывное жидкофазное спекание?
- •35. В чем заключаются особенности спекания ультрадисперсного алмазного порошка (уда)?
- •36. Как классифицируют методы получения ультрадисперсных материалов?
- •Каковы существуют схемы получения дисперсных материалов импульсным методом?
- •Как осуществляется допирование ультрадисперсных частиц ионами химических элементов в процессе синтеза?
- •Как можно влиять на размер синтезируемых алмазов?
- •С чем связана перспективность импульсных методов получения наночастиц?
- •Какие процессы происходят при электрическом взрыве проводников?
- •Какая электрическая схема используется в установках для получения порошков с помощью эвп?
- •Назовите физические основы диспергирования металлов с помощью импульсов электрического тока.
- •В чем отличия свойств нанопорошков, получаемых методом электровзрыва в вакууме и в различных средах?
- •Как получают нанокерамики методом эвп?
- •В чем заключается отличительная особенность компактирования наноматериалов?
- •Назовите основные функциональные показатели нанокерамик.
- •Какие преимущества имеет применение детонационного порошка в каучуках?
- •Как осуществляется нанесение электрохимического покрытия на инструменты?
- •Как работает присадка на основе наноуглеродного порошка в смазочных маслах?
- •Как работают полировальные пасты и суспензии на основе детонационного алмаза?
- •Каковы перспективы применения наноматериалов в электронике и оптике?
Каковы основные моменты газофазного синтеза метода получения молекулярных кластеров?
Существуют две принципиальные схемы ударно-волнового нагружения:
1. Контактная схема, при которой сырье для синтеза находится в контакте с зарядом либо непосредственно, либо через слой металла. В этом случае давление обычно не превышает 30–40 ГПа.
2. Бесконтактная схема, при которой на материал воздействует металлический ударник (лайнер), разгоняемый зарядом ВВ. Давление в материале зависит от скорости ударника и может достигать 100 ГПа и более. В обеих схемах энергия сжатия может создаваться либо скользящей, либо лобовой детонационной волной. За счет столкновения ударных волн, создаваемых в материале этими видами детонационных волн, образец может сжиматься второй ударной волной до более высоких давлений. Противоположно направленные импульсы ударных волн уравновешиваются, что облегчает сохранение образцов.
По своей геометрии устройства ударно-волнового нагружения делятся на плоские, осесимметричные (цилиндрические) и сферические (с центральной симметрией). В двух последних используется явление кумуляции за счет создания сходящихся ударных волн.
Назовите основные схемы ударно-волнового нагружения.
Плоское нагружение образцов широко используется для исследования параметров ударного нагружения (в частности для построения ударных адиабат). Параметры плоских УВ достаточно просто измерять и рассчитывать. На сжимаемый образец метается с помощью заряда ВВ плоская пластина толщиной 0,5–5 мм со скоростью до 6,5 км/с. В образце создается УВ с амплитудой до 200 ГПа. Массивный свинцовый контейнер обеспечивает сохранение 90 % объема образца. В этом устройстве использовалось сжатие смеси графита с металлами-охладителями. Результаты применения такого устройства: при сжатии чугуна степень превращения графита в чугуне – 52 или 1,25 % массы чугуна, выход алмаза – 42,5 карата на 1 кг заряда ВВ.
Каково назначение устройств плоского нагружения. Каковы особенности ударных волн при плоском нагружении?
При контактном взрыве профиль УВ близок к треугольному, а при ударе пластиной амплитуда УВ постоянна в течение времени прохождения УВ по пластине.
Осесимметричные устройства. Именно с помощью таких устройств впервые были сохранены ударносжатые образцы. В этих устройствах цилиндрическая стальная капсула с материалом может нагружаться двумя способами:
• контактным, когда капсула помещается внутри заряда ВВ, а сходящиеся к оси капсулы УВ создаются скользящей детонацией, распространяющейся по заряду вдоль оси капсулы;
• бесконтактным, когда капсула нагружается метаемой коаксиально цилиндрической оболочкой. Во всех случаях в образце создается трехударная конфигурация: сходящаяся к оси коническая волна, зона однократного сжатия (волна Маха) у оси и расходящаяся волна, отраженная от этой зоны. Чтобы исключить волну Маха и повысить однородность сжатия образца, вцентре вдоль оси капсулы располагают стальной стержень.
Каково назначение сферических устройств? Что собой представляет фронт ударных волн при сферическом нагружении?
Плоские и цилиндрические устройства сохранения имеют один принципиальный недостаток – эффекты боковой или торцевой разгрузки, искажающие одномерность сжатия. Сферическая система лишена этого недостатка.
Согласно расчетным оценкам в образце кварца диаметром 48 мм на фронте
сходящейся УВ реализуются на радиусе 1–2 мм давления 300–100 ГПа и
плотность энергии 30–10 кДж/г.
Увеличение размеров сферической системы позволяет получать те же
состояния на более высоких радиусах и увеличить длительность импульса
давления.
Фронт УВ при сферическом нагружении – сходящийся.
Наружная поверхность заряда синхронно инициируется специальной
инициирующей системой или многими электродетонаторами. В результате в
заряде создается сферически сходящаяся детонационная волна, а в капсуле и
в образце – сходящаяся УВ.