
- •Что такое нанотехнология в контексте научно-технического направления?
- •Каковы особенности материалов нанометрового масштаба?
- •Какова современная классификация нанотехнологии?
- •Каковы особенности технологии наноматериалов как одного из направлений нанотехнологии?
- •Как меняется роль поверхности при уменьшении размеров частиц и почему?
- •Назовите основные методы получения ультрадисперсных частиц.
- •Как получают наноматериалы с помощью механического измельчения и диспергирования в жидкой фазе?
- •Как получают наноматериалы с помощью методов, основанных на процессах испарения и конденсации?
- •В чем суть метода получения наноматериалов с помощью термического разложения?
- •Назовите особенности детонационного синтеза алмазов и ударно-волнового синтеза керамических материалов.
- •Сформулируйте основные закономерности образования нанокристаллических частиц при конденсации.
- •Каковы характеристики наночастиц, получаемых методом испарения- конденсации?
- •В чем состоят особенности работы установок, использующих принцип испарения-конденсаци?
- •В чем состоят особенности работы установок, использующих принцип испарения-конденсаци?
- •Как получают высокодисперсные порошки методом плазмохимического синтеза?
- •Каковы основные моменты газофазного синтеза метода получения молекулярных кластеров?
- •Назовите основные схемы ударно-волнового нагружения.
- •Каково назначение устройств плоского нагружения. Каковы особенности ударных волн при плоском нагружении?
- •Каково назначение сферических устройств? Что собой представляет фронт ударных волн при сферическом нагружении?
- •Как синтезируют новые материалы в ударной волне в системе металл – жидкость?
- •Каковы основы синтеза алмазных частиц при ударно-волновой обработке смесей графита с металлами?
- •Каковы отличия детонации конденсированных взрывчатых веществ с отрицательным кислородным балансом?
- •Сформулируйте условия, необходимые для детонационного синтеза алмазных частиц.
- •Как получают нанопорошки оксидов?
- •Какие стадии выделяют в процессе детонационного синтеза алмазных частиц?
- •Какие вещества называются взрывчатыми?
- •Как классифицируют взрывчатые вещества?
- •Перечислите вредные факторы взрывчатых веществ.
- •Какие понятия используются для характеристики свойств вв?
- •В каких областях применяются взрывчатые вещества?
- •31. В каких направлениях развивается применение вв в качестве энергоносителя при прессовании некомпактных материалов?
- •32. Какие механизмы компактирования рассматриваются при взрывном прессовании?
- •33. В чем сходство и отличие сварки взрывом и сварки трением?
- •34. Как осуществляется взрывное жидкофазное спекание?
- •35. В чем заключаются особенности спекания ультрадисперсного алмазного порошка (уда)?
- •36. Как классифицируют методы получения ультрадисперсных материалов?
- •Каковы существуют схемы получения дисперсных материалов импульсным методом?
- •Как осуществляется допирование ультрадисперсных частиц ионами химических элементов в процессе синтеза?
- •Как можно влиять на размер синтезируемых алмазов?
- •С чем связана перспективность импульсных методов получения наночастиц?
- •Какие процессы происходят при электрическом взрыве проводников?
- •Какая электрическая схема используется в установках для получения порошков с помощью эвп?
- •Назовите физические основы диспергирования металлов с помощью импульсов электрического тока.
- •В чем отличия свойств нанопорошков, получаемых методом электровзрыва в вакууме и в различных средах?
- •Как получают нанокерамики методом эвп?
- •В чем заключается отличительная особенность компактирования наноматериалов?
- •Назовите основные функциональные показатели нанокерамик.
- •Какие преимущества имеет применение детонационного порошка в каучуках?
- •Как осуществляется нанесение электрохимического покрытия на инструменты?
- •Как работает присадка на основе наноуглеродного порошка в смазочных маслах?
- •Как работают полировальные пасты и суспензии на основе детонационного алмаза?
- •Каковы перспективы применения наноматериалов в электронике и оптике?
В чем состоят особенности работы установок, использующих принцип испарения-конденсаци?
При плазмохимическом синтезе используется низкотемпературная (4000–8000 К) азотная, аммиачная, углеводородная, аргоновая плазма дугового, тлеющего, высоко- или сверхвысокочастотного разрядов; в качестве исходного сырья применяют элементы, их галогениды и другие соединения. Характеристики порошков зависят от используемого сырья, технологии синтеза и типа плазмотрона. Частицы плазмохимических порошков являются монокристаллами и имеют размеры от 10 до 100–200 нм и более. Плазмохимический синтез включает несколько этапов. На первом этапе происходит образование активных частиц в дуговых, высокочастотных и сверхвысокочастотных плазмотронах. Наиболее высокой мощностью и коэффициентом полезного действия обладают дуговые плазмотроны, однако получаемые в них материалы загрязнены продуктами эрозии электродов; безэлектродные высокочастотные и СВЧ-плазмотроны не имеют этого недостатка. На следующем этапе в результате закалки происходит выделение продуктов взаимодействия. Выбор места и скорости закалки позволяет получить порошки с заданными составом, формой и размером частиц. Получаемые в результате плазмохимического синтеза порошки имеют правильную форму и размер частиц от 10 до 100 нм и более.
Как получают высокодисперсные порошки методом плазмохимического синтеза?
Газофазный синтез с использованием лазерного излучения для создания и поддержания плазмы, в которой происходит химическая реакция, оказался эффективным методом получения молекулярных кластеров. Молекулярные кластеры – новая структурная модификация вещества, открывающая новые возможности создания ранее не известных полиморфных модификаций веществ с нанометровыми размерами структурных элементов. Молекулярные кластеры занимают совершенно особое место среди веществ, имеющих наноструктуру. Наиболее известны среди них фуллерены – новая аллотропная модификация углерода наряду с графитом и алмазом. Очень необычны свойства фуллеренов... (тут кратко рассказывается про фуллерены, думаю, что все помнят хотя бы примерно, что это такое)... Так, кристаллические фуллерены представляют собой полупроводники с фотопроводимостью при оптическом излучении, а кристаллы С60, легированные атомами щелочных металлов, обладают металлической проводимостью и переходят в сверхпроводящее состояние при 30 К и выше. Превращение кристаллического фуллерена в алмаз происходит даже при комнатной температуре при давлении 20 ГПа, а при нагреве фуллерена до 1500 К для перехода в алмаз достаточно давления 7 ГПа (для аналогичного превращения графита в алмаз требуются температура 900 К и давление 30–50 ГПа). Растворы фуллеренов имеют нелинейные оптические свойства, что проявляется в резком снижении прозрачности раствора при превышении некоторого критического значения интенсивности оптического излучения. Методом плазмохимического газофазного синтеза получены также кластеры Ti8C12. В качестве инертного газа использовали гелий, реагентами были углеводороды (метан, этилен, ацетилен, пропилен и бензол) и пары титана, давление газовой смеси в реакторе составляло 93 ГПа (0,7 мм рт. ст.). Для испарения вращающегося металлического прутка титана и создания ионизированного пучка паров металла применяли сфокусированное излучение Nd-лазера с длиной волны 532 нм. Нейтральные и ионизированные кластеры выделяли из продуктов реакции и анализировали с помощью масс-спектрометра. В масс-спектрах продуктов реакции обнаруживался резкий пик, соответствующий молекуле Ti8C12.