Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TEA_EKZAMEN.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
379.39 Кб
Скачать

Общее представление о корреляционно-регрессивном анализе

Существующие между явлениями формы и виды связей весьма разнообразны по своей классификации. Предметом статистики являются только такие из них, которые имеют количественный характер и изучаются с помощью количественных методов. Рассмотрим метод корреляционно-регрессионного анализа, который является основным в изучении взаимосвязей явлений.

Данный метод содержит две свои составляющие части — корреляционный анализ и регрессионный анализ.Корреляционный анализ — это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Регрессионный анализ — это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.

Для оценки силы связи в теории корреляции применяется шкала английского статистика Чеддока: слабая — от 0,1 до 0,3; умеренная — от 0,3 до 0,5; заметная — от 0,5 до 0,7; высокая — от 0,7 до 0,9; весьма высокая (сильная) — от 0,9 до 1,0. Она используется далее в примерах по теме.

Линейная корреляция

Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной — положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях.

Если переменные — количественные и равноценные в своих независимых наблюдениях   при их общем количестве  , то важнейшими эмпирическими мерами тесноты их линейной взаимосвязи являются коэффициент прямой корреляции знаков австрийского психолога Г.Т.Фехнера (1801-1887) и коэффициенты парной, чистой (частной) и множественной (совокупной) корреляции английского статистика-биометрика К.Пирсона (1857-1936).

Коэффициент парной корреляции знаков Фехнера определяет согласованность направлений в индивидуальных отклонениях переменных   и   от своих средних   и 

32Методы линейного программирования

Математическое программирование включает в себя такие разделы математики как линейное, нелинейное и динамическое программирование. Сюда же обычно относят стохастическое программирование, теорию игр, теорию массового обслуживания, теорию управления запасами и некоторые другие. Итак, математическое программирование — это раздел высшей математики, занимающийся решением задач, связанных с нахождением экстремумовфункций нескольких переменных при наличии ограничений на переменные. Методами математического программирования решаются задачи распределения ресурсов, планирования выпуска продукции, ценообразования, транспортные задачи и т.п.

     Начало линейному программированию было положено в 1939 г. советским математиком-экономистом Л. В. Канторовичем в работе «Математические методы организации и планирования производства». Появление этой работы открыло новый этап в применении математики в экономике.

 Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспек-тивного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т. д. Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов), производственно-транспортных и других задач.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]