
- •1. Поступательное движение материальной точки. Скорость, ускорение (среднее, мгновенное). Уравнения движения при равноускоренном прямолинейном движении.
- •2. Вращательное движение (равномерное, неравномерное) материальной точки. Угловая скорость и ускорение. Связь между линейными и угловыми характеристиками движения
- •3. Классические законы динамики поступательного движения Основной закон динамики материальной точки
- •5. Момент силы, момент импульса материальной точки и системы материальных точек.
- •6. Осевой момент инерции материальной точки и системы материальных точек. Теорема Штейнера
- •8. Законы изменения и сохранения момента импульса
- •9. Работа силы. Мощность
- •2. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. – средняя мощность. – мгновенная мощность.
- •10. Кинетическая и потенциальная энергия. Закон сохранения механической энергии
- •11. Гармонические колебания и их характеристики. Смещение, скорость и ускорение при гармоническом колебательном движении
- •1) Колебания, которые встречаются в природе и технике, часто имеют близкий к гармоническому характер;
- •2) Различные периодические процессы (процессы, которые повторяются через равные промежутки времени) можно представить как суперпозицию (наложение) гармонических колебаний.
- •12. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники
- •13. Энергия гармонических колебаний
- •14. Давление в неподвижной жидкости. Уравнение Бернулли
- •15. Идеальный газ. Основное уравнение молекулярно-кинетической теории газов
- •17. Круговые процессы. Кпд тепловой машины. Кпд теплового двигателя, работающего по обратимому циклу Карно
- •18. Второе начало термодинамики. Энтропия и II начало термодинамики
- •19. Взаимодействие электрических зарядов. Закон Кулона
- •20. Напряженность электрического поля. Принцип суперпозиции полей
- •21. Электрический потенциал. Разность потенциалов. Работа по перемещению зарядов в электростатическом поле
- •84.1 Откуда следует, что потенциальная энергия заряда qq0 в поле заряда q равна
- •84.8 Где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
- •22. Электрический диполь. Потенциал и напряженность поля диполя
- •1. Напряженность поля на продолжении оси диполя в точке а. Как видно из рисунка, напряженность поля диполя в точке а направлена по оси диполя и по модулю равна
- •2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке в (рис. 123). Точка в равноудалена от зарядов, поэтому
- •23. Диэлектрики. Явление поляризации диэлектриков
- •24. Проводники в электростатическом иоле. Явление электростатической индукции
- •25. Электроемкость проводника. Конденсатор, его электроемкость
- •26. Ток проводимости в металлах, его характеристики
- •1) Положительно заряженных ионов, колеблющихся около положения равновесия, и
- •2) Свободных электронов, способных перемещаться по всему объему проводника.
- •27. Обобщенный закон Ома в интегральной форме для участка цени и полной цепи
- •3 ) Если замкнутый участок цепи, содержит э.Д.С., тогда , и получаем: – закон Ома для замкнутого участка цепи, содержащего э.Д.С.
- •28. Правила Кирхгофа, их применение для решения задач с разветвленными цепями
- •29. Магнитное поле электрического тока. Индукция и напряженность магнитного поля. Правило Ампера для расчета силы, действующей на проводник с током в магнитном поле
- •30. Закон Био-Савара-Лапласа и его применение для расчета магнитных полей
- •31. Действие магнитного поля на движущийся заряд. Сила Лоренца
- •32. Магнитное взаимодействие проводников с током. Определение силы тока в 1 Ампер
- •33. Явление электромагнитной индукции. Основной закон (Фарадея) электромагнитной индукции. Правило Ленца. Явления самоиндукции, взаимной индукции. Индуктивность
- •34. Трансформатор. Коэффициент трансформации
- •35. Генерация электромагнитных волн в пространстве
- •36. Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания
- •37. Свободные затухающие колебания. Вынужденные электромагнитные колебания. Переменный ток
- •38. Уравнение световой волны. Когерентность и монохроматичность световых волн
- •39. Интерференция света. Интерференционная картина от двух когерентных источников
- •40. Явление дифракции света. Положения принципа Гюйгенса-Френеля. Дифракция Фраунгофера на щели и дифракционной решетке. Рентгеноструктурный анализ
- •41. Естественный и поляризованный свет. Виды поляризации. Двойное лучепреломление. Поляризация при отражении и преломлении света. Закон Брюстера
- •42. Тепловое излучение и люминесценция. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана. Законы Вина. Квантовая гипотеза. Формула Планка
- •43. Единство волновых и корпускулярных свойств электромагнитного излучения. Гипотеза де-Бройля. Опытное обоснование корпускулярно-волнового дуализма веществ. Опыты Дэвиссона и Джермера
- •44. Волновая функция, ее статистический смысл. Соотношение неопределенностей Гейзенберга
- •45. Общее и стационарное уравнения Шредингера, их применение для решения физических задач
- •46. Резерфордовская модель строения атома. Модель Бора
- •47. Квантовомеханическое строение атома водорода. Энергетические уровни свободных атомов. Квантовые числа. Спин электрона. Принцип Паули
- •48. Энергетические зоны в кристаллах. Металлы, диэлектрики, полупроводники
- •49. Строение и основные характеристики атомных ядер. Ядерное взаимодействие. Дефект массы
- •50. Ядерные реакции. Деление ядер. Использование ядерной энергии
- •1) По роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, α-частиц); реакции под действием ᵞ-квантов;
- •51. Реакции синтеза ядер. Использование ядерной энергии
- •52. Фундаментальные взаимодействия. Элементарные частицы, их свойства
13. Энергия гармонических колебаний
Свободные, или собственные, колебания – это такое движение системы, которое происходит при отсутствии внешних воздействий. Поскольку упругие или квазиупругие силы, под действием которых происходят гармонические колебания, являются консервативными, то полная энергия таких колебаний должна оставаться постоянной. Полная энергия колеблющейся системы слагается из кинетической энергии элемента системы, который движется и имеет массу, и потенциальной энергии упругой части системы, равной работе квазиупругой силы. В процессе колебаний величина каждой из них периодически меняется, происходит преобразование кинетической энергии в потенциальную и наоборот.
Пусть
система гармонически колеблется по
закону
Кинетическая
энергия системы
потенциальная
энергия
или
, где
.
Сравнивая
выражения для
и
,
видим, что значения кинетической и
потенциальной энергии колеблются со
сдвигом фаз, равным π/2. Так, минимуму
кинетической энергии в состоянии
максимального отклонения соответствует
максимум потенциальной энергии. При
прохождении положения равновесия
система имеет максимальную кинетическую
энергию. Потенциальная же энергия равна
нулю, потому что в положении равновесия
отсутствуют квазиупругие силы. При
дальнейшем движении квазиупругие силы
выполняют отрицательную работу, в
результате чего кинетическая энергия
уменьшается, а потенциальная энергия
увеличивается. Зависимость потенциальной
энергии колеблющегося тела (например,
пружинного маятника), от смещения
изображена на рис. 23.5.
Полная
энергия системы
не зависит от состояния системы.
14. Давление в неподвижной жидкости. Уравнение Бернулли
Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.
Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).
Рис.3.5. Схема к выводу уравнения Бернулли для идеальной жидкости
Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q.
Для
измерения давления жидкости применяют
пьезометры
- тонкостенные стеклянные трубки, в
которых жидкость поднимается на высоту
. В каждом сечении установлены пьезометры,
в которых уровень жидкости поднимается
на разные высоты.
Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.
Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).
Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0, называемой плоскостью сравнения, будет одинакова.
Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.
Для
двух произвольных сечений 1-1
и 2-2
потока идеальной жидкости уравнение
Бернулли имеет следующий вид:
Так
как сечения 1-1
и 2-2
взяты произвольно, то полученное
уравнение можно переписать иначе:
и прочитать так:
сумма трех членов уравнения Бернулли
для любого сечения потока идеальной
жидкости есть величина постоянная.
С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:
–
удельные
энергии положения, характеризующие
потенциальную энергию в сечениях
1-1
и 2-2;
–
удельные
энергии давления, характеризующие
потенциальную энергию давления в тех
же сечениях;
– удельные
кинетические энергии в тех же сечениях.
Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.
Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 - геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; - пьезометрические высоты; - скоростные высоты в указанных сечениях.
В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.