
- •1. Поступательное движение материальной точки. Скорость, ускорение (среднее, мгновенное). Уравнения движения при равноускоренном прямолинейном движении.
- •2. Вращательное движение (равномерное, неравномерное) материальной точки. Угловая скорость и ускорение. Связь между линейными и угловыми характеристиками движения
- •3. Классические законы динамики поступательного движения Основной закон динамики материальной точки
- •5. Момент силы, момент импульса материальной точки и системы материальных точек.
- •6. Осевой момент инерции материальной точки и системы материальных точек. Теорема Штейнера
- •8. Законы изменения и сохранения момента импульса
- •9. Работа силы. Мощность
- •2. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. – средняя мощность. – мгновенная мощность.
- •10. Кинетическая и потенциальная энергия. Закон сохранения механической энергии
- •11. Гармонические колебания и их характеристики. Смещение, скорость и ускорение при гармоническом колебательном движении
- •1) Колебания, которые встречаются в природе и технике, часто имеют близкий к гармоническому характер;
- •2) Различные периодические процессы (процессы, которые повторяются через равные промежутки времени) можно представить как суперпозицию (наложение) гармонических колебаний.
- •12. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники
- •13. Энергия гармонических колебаний
- •14. Давление в неподвижной жидкости. Уравнение Бернулли
- •15. Идеальный газ. Основное уравнение молекулярно-кинетической теории газов
- •17. Круговые процессы. Кпд тепловой машины. Кпд теплового двигателя, работающего по обратимому циклу Карно
- •18. Второе начало термодинамики. Энтропия и II начало термодинамики
- •19. Взаимодействие электрических зарядов. Закон Кулона
- •20. Напряженность электрического поля. Принцип суперпозиции полей
- •21. Электрический потенциал. Разность потенциалов. Работа по перемещению зарядов в электростатическом поле
- •84.1 Откуда следует, что потенциальная энергия заряда qq0 в поле заряда q равна
- •84.8 Где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
- •22. Электрический диполь. Потенциал и напряженность поля диполя
- •1. Напряженность поля на продолжении оси диполя в точке а. Как видно из рисунка, напряженность поля диполя в точке а направлена по оси диполя и по модулю равна
- •2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке в (рис. 123). Точка в равноудалена от зарядов, поэтому
- •23. Диэлектрики. Явление поляризации диэлектриков
- •24. Проводники в электростатическом иоле. Явление электростатической индукции
- •25. Электроемкость проводника. Конденсатор, его электроемкость
- •26. Ток проводимости в металлах, его характеристики
- •1) Положительно заряженных ионов, колеблющихся около положения равновесия, и
- •2) Свободных электронов, способных перемещаться по всему объему проводника.
- •27. Обобщенный закон Ома в интегральной форме для участка цени и полной цепи
- •3 ) Если замкнутый участок цепи, содержит э.Д.С., тогда , и получаем: – закон Ома для замкнутого участка цепи, содержащего э.Д.С.
- •28. Правила Кирхгофа, их применение для решения задач с разветвленными цепями
- •29. Магнитное поле электрического тока. Индукция и напряженность магнитного поля. Правило Ампера для расчета силы, действующей на проводник с током в магнитном поле
- •30. Закон Био-Савара-Лапласа и его применение для расчета магнитных полей
- •31. Действие магнитного поля на движущийся заряд. Сила Лоренца
- •32. Магнитное взаимодействие проводников с током. Определение силы тока в 1 Ампер
- •33. Явление электромагнитной индукции. Основной закон (Фарадея) электромагнитной индукции. Правило Ленца. Явления самоиндукции, взаимной индукции. Индуктивность
- •34. Трансформатор. Коэффициент трансформации
- •35. Генерация электромагнитных волн в пространстве
- •36. Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания
- •37. Свободные затухающие колебания. Вынужденные электромагнитные колебания. Переменный ток
- •38. Уравнение световой волны. Когерентность и монохроматичность световых волн
- •39. Интерференция света. Интерференционная картина от двух когерентных источников
- •40. Явление дифракции света. Положения принципа Гюйгенса-Френеля. Дифракция Фраунгофера на щели и дифракционной решетке. Рентгеноструктурный анализ
- •41. Естественный и поляризованный свет. Виды поляризации. Двойное лучепреломление. Поляризация при отражении и преломлении света. Закон Брюстера
- •42. Тепловое излучение и люминесценция. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана. Законы Вина. Квантовая гипотеза. Формула Планка
- •43. Единство волновых и корпускулярных свойств электромагнитного излучения. Гипотеза де-Бройля. Опытное обоснование корпускулярно-волнового дуализма веществ. Опыты Дэвиссона и Джермера
- •44. Волновая функция, ее статистический смысл. Соотношение неопределенностей Гейзенберга
- •45. Общее и стационарное уравнения Шредингера, их применение для решения физических задач
- •46. Резерфордовская модель строения атома. Модель Бора
- •47. Квантовомеханическое строение атома водорода. Энергетические уровни свободных атомов. Квантовые числа. Спин электрона. Принцип Паули
- •48. Энергетические зоны в кристаллах. Металлы, диэлектрики, полупроводники
- •49. Строение и основные характеристики атомных ядер. Ядерное взаимодействие. Дефект массы
- •50. Ядерные реакции. Деление ядер. Использование ядерной энергии
- •1) По роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, α-частиц); реакции под действием ᵞ-квантов;
- •51. Реакции синтеза ядер. Использование ядерной энергии
- •52. Фундаментальные взаимодействия. Элементарные частицы, их свойства
51. Реакции синтеза ядер. Использование ядерной энергии
Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B). Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев.
Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что силы, действующие на таких расстояниях, преобладают над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. Оно будет иметь несколько меньшую массу, чем сумма масс исходных ядер, а разница становится энергией, которая и выделяется в процессе реакции. Количество выделяемой энергии описывает известная формула E=mc². Более лёгкие атомные ядра проще свести на нужное расстояние, поэтому водород — самый распространенный элемент во Вселенной — является наилучшим горючим для реакции синтеза. Установлено, что смесь двух изотопов, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на его декомиссию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом. Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.
Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.
Впервые на уран как новый источник энергии обратил внимание академик В. И. Вернадский
Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии. На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы). В условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия. Энергия термоядерного синтеза применяется в водородной бомбе. Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах.
Плюсы:
Отсутствие вредных выбросов; Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (зола угольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения); Небольшой объём используемого топлива и возможность его повторного использования после переработки; Высокая мощность: 1000—1600 МВт на энергоблок; Низкая себестоимость энергии, особенно тепловой.
Недостатки:
Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению; Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах; Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая; Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.