
- •1. Поступательное движение материальной точки. Скорость, ускорение (среднее, мгновенное). Уравнения движения при равноускоренном прямолинейном движении.
- •2. Вращательное движение (равномерное, неравномерное) материальной точки. Угловая скорость и ускорение. Связь между линейными и угловыми характеристиками движения
- •3. Классические законы динамики поступательного движения Основной закон динамики материальной точки
- •5. Момент силы, момент импульса материальной точки и системы материальных точек.
- •6. Осевой момент инерции материальной точки и системы материальных точек. Теорема Штейнера
- •8. Законы изменения и сохранения момента импульса
- •9. Работа силы. Мощность
- •2. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. – средняя мощность. – мгновенная мощность.
- •10. Кинетическая и потенциальная энергия. Закон сохранения механической энергии
- •11. Гармонические колебания и их характеристики. Смещение, скорость и ускорение при гармоническом колебательном движении
- •1) Колебания, которые встречаются в природе и технике, часто имеют близкий к гармоническому характер;
- •2) Различные периодические процессы (процессы, которые повторяются через равные промежутки времени) можно представить как суперпозицию (наложение) гармонических колебаний.
- •12. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники
- •13. Энергия гармонических колебаний
- •14. Давление в неподвижной жидкости. Уравнение Бернулли
- •15. Идеальный газ. Основное уравнение молекулярно-кинетической теории газов
- •17. Круговые процессы. Кпд тепловой машины. Кпд теплового двигателя, работающего по обратимому циклу Карно
- •18. Второе начало термодинамики. Энтропия и II начало термодинамики
- •19. Взаимодействие электрических зарядов. Закон Кулона
- •20. Напряженность электрического поля. Принцип суперпозиции полей
- •21. Электрический потенциал. Разность потенциалов. Работа по перемещению зарядов в электростатическом поле
- •84.1 Откуда следует, что потенциальная энергия заряда qq0 в поле заряда q равна
- •84.8 Где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
- •22. Электрический диполь. Потенциал и напряженность поля диполя
- •1. Напряженность поля на продолжении оси диполя в точке а. Как видно из рисунка, напряженность поля диполя в точке а направлена по оси диполя и по модулю равна
- •2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке в (рис. 123). Точка в равноудалена от зарядов, поэтому
- •23. Диэлектрики. Явление поляризации диэлектриков
- •24. Проводники в электростатическом иоле. Явление электростатической индукции
- •25. Электроемкость проводника. Конденсатор, его электроемкость
- •26. Ток проводимости в металлах, его характеристики
- •1) Положительно заряженных ионов, колеблющихся около положения равновесия, и
- •2) Свободных электронов, способных перемещаться по всему объему проводника.
- •27. Обобщенный закон Ома в интегральной форме для участка цени и полной цепи
- •3 ) Если замкнутый участок цепи, содержит э.Д.С., тогда , и получаем: – закон Ома для замкнутого участка цепи, содержащего э.Д.С.
- •28. Правила Кирхгофа, их применение для решения задач с разветвленными цепями
- •29. Магнитное поле электрического тока. Индукция и напряженность магнитного поля. Правило Ампера для расчета силы, действующей на проводник с током в магнитном поле
- •30. Закон Био-Савара-Лапласа и его применение для расчета магнитных полей
- •31. Действие магнитного поля на движущийся заряд. Сила Лоренца
- •32. Магнитное взаимодействие проводников с током. Определение силы тока в 1 Ампер
- •33. Явление электромагнитной индукции. Основной закон (Фарадея) электромагнитной индукции. Правило Ленца. Явления самоиндукции, взаимной индукции. Индуктивность
- •34. Трансформатор. Коэффициент трансформации
- •35. Генерация электромагнитных волн в пространстве
- •36. Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания
- •37. Свободные затухающие колебания. Вынужденные электромагнитные колебания. Переменный ток
- •38. Уравнение световой волны. Когерентность и монохроматичность световых волн
- •39. Интерференция света. Интерференционная картина от двух когерентных источников
- •40. Явление дифракции света. Положения принципа Гюйгенса-Френеля. Дифракция Фраунгофера на щели и дифракционной решетке. Рентгеноструктурный анализ
- •41. Естественный и поляризованный свет. Виды поляризации. Двойное лучепреломление. Поляризация при отражении и преломлении света. Закон Брюстера
- •42. Тепловое излучение и люминесценция. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана. Законы Вина. Квантовая гипотеза. Формула Планка
- •43. Единство волновых и корпускулярных свойств электромагнитного излучения. Гипотеза де-Бройля. Опытное обоснование корпускулярно-волнового дуализма веществ. Опыты Дэвиссона и Джермера
- •44. Волновая функция, ее статистический смысл. Соотношение неопределенностей Гейзенберга
- •45. Общее и стационарное уравнения Шредингера, их применение для решения физических задач
- •46. Резерфордовская модель строения атома. Модель Бора
- •47. Квантовомеханическое строение атома водорода. Энергетические уровни свободных атомов. Квантовые числа. Спин электрона. Принцип Паули
- •48. Энергетические зоны в кристаллах. Металлы, диэлектрики, полупроводники
- •49. Строение и основные характеристики атомных ядер. Ядерное взаимодействие. Дефект массы
- •50. Ядерные реакции. Деление ядер. Использование ядерной энергии
- •1) По роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, α-частиц); реакции под действием ᵞ-квантов;
- •51. Реакции синтеза ядер. Использование ядерной энергии
- •52. Фундаментальные взаимодействия. Элементарные частицы, их свойства
41. Естественный и поляризованный свет. Виды поляризации. Двойное лучепреломление. Поляризация при отражении и преломлении света. Закон Брюстера
Световой
вектор — вектор напряженности
электрического поля. Свет со всевозможными
равновероятными ориентациями вектора
называется естественным. Свет, в котором
направления колебаний светового вектора
каким-то образом упорядочены, называется
поляризованным.
Так,
если в результате каких-либо внешних
воздействий появляется преимущественное
(но не исключительное!) направление
колебаний вектора
,
то имеем дело с частично поляризованным
светом. Свет, в котором вектор
колеблется только в одном направлении,
перпендикулярном лучу, называется
плоскополяризованпым (линейно
поляризованным). Плоскополяризованный
свет является предельным случаем
эллиптически поляризованного света —
света, для которого вектор
(вектор
)
изменяется со временем так, что его
конец описывает эллипс, лежащий в
плоскости, перпендикулярной лучу. Если
эллипс поляризации вырождается в
прямую, то имеем дело с рассмотренным
выше плоскополяризованным светом, если
в окружность, то имеем дело с циркулярно
поляризованным (поляризованным по
кругу) светом.
Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего па них светового пучка. Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу. В кристалле исландского шпата имеется единственное направление, вдоль которого двойное лучепреломление не наблюдается. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называется оптической осью кристалла. В данном случае речь идет именно о направлении, а не о прямой линии, проходящей через какую-то точку кристалла. Любая прямая, проходящая параллельно данному направлению, является оптической осью кристалла. Кристаллы в зависимости от типа их симметрии бывают одноосные и двухосные, т. е. имеют одну или две оптические оси (к первым и относится исландский шпат). Плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (или главным сечением кристалла). Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателем! преломления.
Если естественный свет падает на разницу раздела двух диэлектриков например, воздуха и стекла), то часть его отражается, а часть преломляется и распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), можно убедиться в том, что отраженный и преломленный лучи частично поляризованы: при вращении анализатора вокруг лучей интенсивность света периодически усиливается и ослабевает
Степенью
поляризации называется величина
где
и
-
соответственно максимальная и минимальная
интенсивность частично поляризованного
света, пропускаемого анализатором. Для
естественного света
и
P=0, для плоскополяризованного
и P=1.
Степень
поляризации зависит от угла падения
лучей и показателя преломления.
Шотландский физик Д. Брюстер (1781 —1868)
установил закон, согласно которому при
угле падения
(угол Брюстера), определяемого соотношением
,
-показатель
преломления второй среды относительно
первой, отраженный луч является плоско
поляризованным. Преломленный же луч
при угле падения
поляризуется максимально, но не полностью.
Если свет падает на границу раздела под
углом Брюстера, то отраженный и
преломленный лучи взаимно перпендикулярны