
- •1. Поступательное движение материальной точки. Скорость, ускорение (среднее, мгновенное). Уравнения движения при равноускоренном прямолинейном движении.
- •2. Вращательное движение (равномерное, неравномерное) материальной точки. Угловая скорость и ускорение. Связь между линейными и угловыми характеристиками движения
- •3. Классические законы динамики поступательного движения Основной закон динамики материальной точки
- •5. Момент силы, момент импульса материальной точки и системы материальных точек.
- •6. Осевой момент инерции материальной точки и системы материальных точек. Теорема Штейнера
- •8. Законы изменения и сохранения момента импульса
- •9. Работа силы. Мощность
- •2. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. – средняя мощность. – мгновенная мощность.
- •10. Кинетическая и потенциальная энергия. Закон сохранения механической энергии
- •11. Гармонические колебания и их характеристики. Смещение, скорость и ускорение при гармоническом колебательном движении
- •1) Колебания, которые встречаются в природе и технике, часто имеют близкий к гармоническому характер;
- •2) Различные периодические процессы (процессы, которые повторяются через равные промежутки времени) можно представить как суперпозицию (наложение) гармонических колебаний.
- •12. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники
- •13. Энергия гармонических колебаний
- •14. Давление в неподвижной жидкости. Уравнение Бернулли
- •15. Идеальный газ. Основное уравнение молекулярно-кинетической теории газов
- •17. Круговые процессы. Кпд тепловой машины. Кпд теплового двигателя, работающего по обратимому циклу Карно
- •18. Второе начало термодинамики. Энтропия и II начало термодинамики
- •19. Взаимодействие электрических зарядов. Закон Кулона
- •20. Напряженность электрического поля. Принцип суперпозиции полей
- •21. Электрический потенциал. Разность потенциалов. Работа по перемещению зарядов в электростатическом поле
- •84.1 Откуда следует, что потенциальная энергия заряда qq0 в поле заряда q равна
- •84.8 Где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
- •22. Электрический диполь. Потенциал и напряженность поля диполя
- •1. Напряженность поля на продолжении оси диполя в точке а. Как видно из рисунка, напряженность поля диполя в точке а направлена по оси диполя и по модулю равна
- •2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке в (рис. 123). Точка в равноудалена от зарядов, поэтому
- •23. Диэлектрики. Явление поляризации диэлектриков
- •24. Проводники в электростатическом иоле. Явление электростатической индукции
- •25. Электроемкость проводника. Конденсатор, его электроемкость
- •26. Ток проводимости в металлах, его характеристики
- •1) Положительно заряженных ионов, колеблющихся около положения равновесия, и
- •2) Свободных электронов, способных перемещаться по всему объему проводника.
- •27. Обобщенный закон Ома в интегральной форме для участка цени и полной цепи
- •3 ) Если замкнутый участок цепи, содержит э.Д.С., тогда , и получаем: – закон Ома для замкнутого участка цепи, содержащего э.Д.С.
- •28. Правила Кирхгофа, их применение для решения задач с разветвленными цепями
- •29. Магнитное поле электрического тока. Индукция и напряженность магнитного поля. Правило Ампера для расчета силы, действующей на проводник с током в магнитном поле
- •30. Закон Био-Савара-Лапласа и его применение для расчета магнитных полей
- •31. Действие магнитного поля на движущийся заряд. Сила Лоренца
- •32. Магнитное взаимодействие проводников с током. Определение силы тока в 1 Ампер
- •33. Явление электромагнитной индукции. Основной закон (Фарадея) электромагнитной индукции. Правило Ленца. Явления самоиндукции, взаимной индукции. Индуктивность
- •34. Трансформатор. Коэффициент трансформации
- •35. Генерация электромагнитных волн в пространстве
- •36. Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания
- •37. Свободные затухающие колебания. Вынужденные электромагнитные колебания. Переменный ток
- •38. Уравнение световой волны. Когерентность и монохроматичность световых волн
- •39. Интерференция света. Интерференционная картина от двух когерентных источников
- •40. Явление дифракции света. Положения принципа Гюйгенса-Френеля. Дифракция Фраунгофера на щели и дифракционной решетке. Рентгеноструктурный анализ
- •41. Естественный и поляризованный свет. Виды поляризации. Двойное лучепреломление. Поляризация при отражении и преломлении света. Закон Брюстера
- •42. Тепловое излучение и люминесценция. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана. Законы Вина. Квантовая гипотеза. Формула Планка
- •43. Единство волновых и корпускулярных свойств электромагнитного излучения. Гипотеза де-Бройля. Опытное обоснование корпускулярно-волнового дуализма веществ. Опыты Дэвиссона и Джермера
- •44. Волновая функция, ее статистический смысл. Соотношение неопределенностей Гейзенберга
- •45. Общее и стационарное уравнения Шредингера, их применение для решения физических задач
- •46. Резерфордовская модель строения атома. Модель Бора
- •47. Квантовомеханическое строение атома водорода. Энергетические уровни свободных атомов. Квантовые числа. Спин электрона. Принцип Паули
- •48. Энергетические зоны в кристаллах. Металлы, диэлектрики, полупроводники
- •49. Строение и основные характеристики атомных ядер. Ядерное взаимодействие. Дефект массы
- •50. Ядерные реакции. Деление ядер. Использование ядерной энергии
- •1) По роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, α-частиц); реакции под действием ᵞ-квантов;
- •51. Реакции синтеза ядер. Использование ядерной энергии
- •52. Фундаментальные взаимодействия. Элементарные частицы, их свойства
84.8 Где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
Если
перемещать заряд Q0
из произвольной точки за пределы поля,
т. е. в бесконечность, где, по условию,
потенциал равен нулю, то работа сил
электростатического поля, согласно
(84.6), A=Q0,
откуда
84.9
Таким образом, потенциал — физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.
Из выражения (84.4) следует, что единица потенциала — вольт (В): 1 В есть потенциал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Нм/(Клм)=1 Дж/(Клм)=1 В/м.
Из
формул (84.3) и (84.4) вытекает, что если поле
создается несколькими зарядами, то
потенциал поля системы зарядов равен
алгебраической
сумме потенциалов полей всех этих
зарядов:
22. Электрический диполь. Потенциал и напряженность поля диполя
Принцип
суперпозиции применим для расчета
электростатического поля электрического
диполя. Электрический
диполь —
система двух равных по модулю разноименных
точечных зарядов (+Q,–Q),
расстояние l
между которыми значительно меньше
расстояния до рассматриваемых точек
поля. Вектор, направленный по оси диполя
(прямой, проходящей через оба заряда)
от отрицательного заряда к положительному
и равный расстоянию между ними, называется
плечом диполя 1. Вектор
(80.3) совпадающий по направлению с плечом
диполя и равный произведению заряда
|Q|
на плечо
l,
называется электрическим моментом
диполя или дипольным моментом.
Согласно
принципу суперпозиции (80.2), напряженность
Е поля диполя в произвольной точке
,
где Е+
и Е–
— напряженности полей, создаваемых
соответственно положительным и
отрицательным зарядами. Воспользовавшись
этой формулой, рассчитаем напряженность
поля в произвольной точке на продолжении
оси диполя и на перпендикуляре к середине
его оси.
1. Напряженность поля на продолжении оси диполя в точке а. Как видно из рисунка, напряженность поля диполя в точке а направлена по оси диполя и по модулю равна
Обозначив расстояние от точки А до середины оси диполя через r, на основании формулы (79.2) для вакуума можно записать
Согласно
определению диполя, l/2<<r,
поэтому
2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке в (рис. 123). Точка в равноудалена от зарядов, поэтому
(80.4)
где
r'
— расстояние от точки В
до середины плеча диполя. Из подобия
равнобедренных треугольников, опирающихся
на плечо диполя и вектор ЕB,
получим
откуда
(80.5)
Подставив в выражение (80.5) значение (80.4), получим
Вектор ЕB имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).