
- •Тема 2.1
- •Архитектура типового мк.
- •Прохождение команд и данных внутри мк. Функции мк.
- •Назначение уу. Функциональная схема уу. Особенности программного и микропрограммного управления.
- •Особенности программного и микропрограммного управления.
- •Назначение алу. Структура алу. Операции пересылки информации в алу. Быстродействие алу.
- •Логическая структура мк. Основные вопросы, решаемые при проектировании логической структуры.
- •Тема 2.2
- •Система команд. Выбор структуры и форматы команд.
- •Способы адресации. Типы архитектурных решений.
- •Роль средства ввода/вывода информации в управлении устройств.
- •Программная модель внешнего устройства. Команды ввода/вывода.
- •Способы передачи слов информации по линиям данных: параллельная, последовательная.
- •Синхронная и асинхронная передача данных.
- •7. Форматы передачи данных
- •9. Программно-управляемый ввод/вывод
- •10. Цикл программного ожидания готовности внешнего устройства
- •11. Последовательная передача данных
- •12. Асинхронный последовательный интерфейс
- •Тема 2.3
- •Основное отличие обмена данными с внешними устройствами с помощью метода прерывания программы.
- •Структура единой программы обработки прерываний и её связь с основной программой.
- •Формирование векторов прерываний в контроллере ву. Реализация приоритетов ву.
- •Упрощенная схема взаимодействия контроллера прерываний с процессором и контроллером шины.
- •Достоинства и основные отличия передачи данных с помощью прямого доступа к памяти.
- •7. Виды прямого доступа к памяти: блочный, одиночный
- •9. Структура зу. Назначение основных блоков.
- •10.Зу с произвольной выборкой: обозначение, внутренняя структура.
- •11. Микросхемы памяти в составе микропроцессорной системы
- •12. Применение и назначение буферной памяти.
- •13. Структурная схема буферной памяти. Стековая память.
- •Тема 2.4
- •Тема 2.5
- •Понятие интерфейса. Внутримашинный интерфейс: многосвязный и односвязный.
- •Функциональные характеристики системной шины.
- •Шины расширений.
- •Универсальные последовательные периферийные шины.
- •Качество и эффективность информационных систем.
- •Надежность информационных систем.
- •Основные показатели надежности.
- •Виды обеспечения надежности.
- •Практическая реализация надежных информационных систем.
- •Режимы пониженного энергопотребления: режим холостого хода, экономичный режим.
- •Уровни представления микропроцессорных систем. Последовательность этапов для создания микропроцессорной системы.
- •Ошибки на этапах проектирования. Проверка правильности проекта.
- •Отладка программ.
- •Свойства контролепригодности системы. Функции средств отладки. Автономности отладка.
- •Комплексная отладка микропроцессорных систем.
- •Состояние производства и использование мпс.
Универсальные последовательные периферийные шины.
Тенденция перехода на последовательные и беспроводные интерфейсы связана с усложнением функциональности интегральных микросхем (специальным кодированием и декодированием данных, устранением сложных процедур синхронизации каналов, эффективной защитой от ошибок, оптимизацией маршрутизации, поддержкой режима «горячего» подключения устройств и др.). Последовательные интерфейсы удобнее параллельных и, как это ни парадоксально, существенно более скоростные. Пропускная способность последовательных интерфейсов увеличивается ввиду соединений с устройствами по типу «точка-точка» (многосвязный интерфейс) вместо общей шины и уменьшения паразитных индуктивностей и емкостей проводов, а следовательно, и возможности работы на более высоких рабочих частотах. Так, рабочие частоты параллельных интерфейсов лежат в пределах от десятков до нескольких сотен мегагерц, а последовательных – до десятка гигагерц (например, последовательный интерфейс PCI Express имеет рабочую частоту 2,5 ГГц). Основные достоинства последовательных интерфейсов:
большая гибкость и функциональность шин;
удобство отладки и использования ввиду переноса «центра тяжести» выполнения этих технологий на микросхемы;
высокая пропускная способность, ввиду многосвязности и снижения паразитных индуктивностей и емкостей в линиях связи и отсутствия сложных процедур синхронизации;
миниатюризация и снижение стоимости монтажа, сокращение количества контактов, проводов, экранов;
возможность «горячего» подключения устройств, то есть динамического конфигурирования системы и ее масштабирования;
облегчение арбитража шин и организации прерываний;
лучшая помехозащищенность и надежность работы.
Последовательная шина USB USB (Universal Serial Bus) – универсальная последовательная шина. USB самостоятельно определяет, что именно подключили к компьютеру, какой драйвер и ресурсы понадобятся устройству, после чего все это выделяет без вмешательства пользователя. Для адекватной работы шины необходима операционная система, которая корректно с ней работает. В данном случае такой ОС является Windows 95 и выше. К шине USB можно одновременно подключить до 127 устройств, практически любых: мониторы, принтеры, сканеры, клавиатуры и т. д. Каждое устройство, подключенное на первом уровне, может работать в качестве коммутатора – то есть к нему, при наличии соответствующих разъемов, могут подключаться еще несколько устройств. Обмен по интерфейсу – пакетный, скорость обмена – 12 Мбит/с. Поддерживается также дополнительный подканал со скоростью обмена данными в 1,5 Мбит/с для медленных устройств (клавиатуры, мыши, модема). Шина USB реализует как синхронный (нужный, например, при проведении телеконференций), так и асинхронный режимы передачи данных. ^ Стандарт IEEE 1394 IEEE 1394 – перспективный последовательный интерфейс, предназначенный для соединения внутренних компонентов компьютера и внешних устройств. IEEE 1394 известен также под именем Fire Wire – «огненный провод». Цифровой последовательный интерфейс FireWire характеризуется высокой надежностью и качеством передачи данных, его протокол поддерживает гарантированную передачу критичной по времени информации, обеспечивая прохождение видео- и аудиосигналов в реальном масштабе времени без заметных искажений. Пропускная способность интерфейса составляет 100-400 Мбит/с, а в будущем ожидается даже 1600 Мбит/с. Этот интерфейс используется для подключения жестких дисков, дисководов CD-ROM и DVD-ROM, а также высокоскоростных внешних устройств, таких как цифровые видеокамеры, видеомагнитофоны и т. д. ^ Последовательный интерфейс SATA В конце 2000 года группа компаний «Working Group» (Intel, IBM, Maxtor, Quantum, Seagate и др.) анонсировала новый чрезвычайно эффективный последовательный интерфейс Serial ATA (SATA), обеспечивающий пропускную способность 1500 Мбит/с по 8-жильному кабелю. Версия SATA-2 имеет скорость передачи уже 3000 Мбит/с. В последующих версиях предполагается увеличение скорости обмена данными до 6000 Мбит/с (550 Мбайт/с). Интерфейс Serial ATA призван сменить параллельный интерфейс ATA (IDE). Последняя версия АТА – Ultra ATA 100/133 с пиковой скоростью передачи данных 133 Мбайт/с (максимально достижимая скорость обмена по такому типу каналов). ^ Последовательный интерфейс SAS В 2004 году представлены последовательные интерфейсы Serial Attached SCSI – SAS со скоростью 3 Гбит/с (пиковая скорость 6 Гбит/с). Обещано второе и третье поколения интерфейса со скоростью до 12 Гбит/с.