Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебные материалы / Внеаудиторная работа.docx
Скачиваний:
54
Добавлен:
30.01.2020
Размер:
168.05 Кб
Скачать

Основные закономерности эмбрионального развития.

1Различают два типа онтогенеза: прямой и непрямой.

Прямой – неличиночный (рыбы, птицы, пресмыкающиеся, яйцеклетки богаты питательными веществами, значительная часть онтогенеза в яйце во внешней среде) и внутриутробный (млекопитающие, обеспечение жизненных функций и развития зародыша материнским организмом через плаценту, роль провизорных органов).

Непрямой – когда организм проходит через стадию личинки – зародыша, способного к самостоятельному существованию (насекомые, амфибии, иглокожие), для этого типа онтогенеза характерен метаморфоз – превращение в зрелую особь.

2

Этапы онтогенеза:

-                     пренатальный (дородовой, эмбриональный) – организм не способен к самостоятельному существованию, развивается внутри материнского организма и полностью зависит от него;

-                     постнатальный (послеродовой, постэмбриональный) – самостоятельное питание, передвижение и т.д.

Важнейшим событием онтогенеза является возможность осуществления размножения, по этому признаку выделяют следующие периоды онтогенеза:

-                     дорепродуктивный (особь не способна к размножению) подразделяют на эмбриональный и ювенильный;

-                     репродуктивный (наиболее стабильное состояние);

-                     пострепродуктивный – связан со старением, характерно прекращение участия в размножении, устойчивость снижается. Различают внешние признаки старости (снижение эластичности кожи, поседение волос, развитие дальнозоркости) и внутренние (обратное развитие органов, снижение эластичности кровеносных сосудов, нарушение кровоснабжения мозга, деятельности сердца и др.). Все это приводит к снижению жизнеспособности и повышению вероятности гибели.

 Смерть как биологическое явление – универсальный способ ограничить участие многоклеточного организма в размножении, обеспечить смену поколений и эволюционный процесс.

Или же это функцию размножения, то его можно разделить на три периода: дорепродуктивный, репродуктивный ипострепродуктивный.

В дорепродуктивном периоде особь не способна к размножению. Основное содержание его заключается в развитии зрелого в половом отношении фенотипа. В этом периоде происходят наиболее выраженные структурные и функциональные преобразования, реализуется основная часть наследственной информации, организм обладает высокой чувствительностью ко всевозможным воздействиям.

В репродуктивном периоде особь осуществляет функцию полового размножения, отличается наиболее стабильным функционированием органов и систем, а также относительной устойчивостью к воздействиям.

Пострепродуктивный период связан со старением организма и характеризуется ослаблением или полным прекращением участия в размножении. Снижаются приспособительные возможности и устойчивость к разнообразным воздействиям. Применительно к онтогенезу человека названные периоды дополнительно характеризуются специфическими социальными моментами (образование, трудоспособность, творчество). Для каждого из указанных периодов характерны свои особенности заболеваемости.

Дорепродуктивный период подразделяют еще на четыре периода: эмбриональный, личиночный, метаморфоз и ювенильный.

Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. Эмбриональный период отличается выраженностью процессов преобразования зиготы в организм, способный к более или менее самостоятельному существованию. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, а также гисто- и органогенеза. Продолжительность его бывает различна. У плацентарных млекопитающих он особенно укорочен. Единственная яйцевая оболочка растворяется перед имплантацией бластоцисты в слизистую матки. Зародыш к этому моменту успевает пройти только стадии зиготы и дробления. Все дальнейшие процессы протекают под защитой и при участии материнского организма. Эволюционное значение этих особенностей будет рассмотрено ниже.

Дроблению предшествуют процессы гаметогенеза и оплодотворения, которые не являются непосредственно индивидуальным развитием и могут даже не привести к нему, но которые во многом определяют дальнейшее развитие зародыша в том случае, если зачатие состоится. Эти процессы называют прогенезом, предшествующим собственно онтогенезу. Цитологически процессы гаметогенеза и оплодотворения представляют собой промежуточное звено, связывающее онтогенезы родителей с онтогенезом их потомства.

Личиночный период в типичном варианте наблюдается в развитии тех позвоночных, зародыши которых выходят из яйцевых оболочек и начинают вести самостоятельный образ жизни, не достигнув дефинитивных (зрелых) черт организации. Так, он встречается у некоторых представителей низших позвоночных — миног, большинства костистых рыб и земноводных. Наиболее характерными чертами личинки являются эмбриональный характер ее организации, наличие временных (провизорных) органов, раннее начало функционирования ряда органов, дающее возможность самостоятельного существования. Благодаря активному питанию личинка получает возможность завершить развитие, а благодаря активному перемещению имеет возможность выбирать условия среды, оптимальные для развития, и выйти, таким образом, из конкуренции со своими же взрослыми сородичами. Продолжительность личиночного периода в сравнении с эмбриональным у всех позвоночных существенно больше.

Метаморфоз состоит в превращении личинки в ювенильную форму. В процессе метаморфоза происходят такие важные морфогенетические преобразования, как частичное разрушение, перестройка и новообразование органов. Степень преобразований тем больше, чем больше различия между средой обитания личинки и взрослого организма, что хорошо иллюстрирует пример развития бесхвостных амфибий.

Ювенильный период начинается с момента завершения метаморфоза и заканчивается половым созреванием и началом размножения. Особенности ювенильного периода проявляются в своеобразии питания молодого организма, его поведения и степени зависимости от родителей. С морфологической точки зрения для этого периода характерны интенсивный рост, установление окончательных пропорций между различными частями тела, завершение развития скелета, кожных покровов, смена зубов, завершение развития половых желез и гормональных регуляций. Продолжительность ювенильного периода у позвоночных варьирует от минимальной, равной 13—18 сут у полевок, до максимальной, равной 18—20 годам у белуги, крокодила, альбатроса, слона. У многих представителей позвоночных, особенно у человека, достижение половой зрелости и начало размножения могут быть разделены значительным промежутком времени.

_____________________________________________

3

Типы яйцеклеток хордовых животных: 1 – алецитальная; 2 – изолецитальная; 3 – умеренно телолецитальная; 4 – резко телолецитальная.

В зависимости от количества содержащегося желтка различают следующие типы яйцеклеток: алецитальные (не содержат желтка или имеют незначительное количество желточных включений – млекопитающие, плоские черви); изолецитальные (с равномерно распределенным желтком – ланцетник, морской еж);умеренно телолецитальные (с неравномерно распределенным желтком – рыбы, земноводные); резко телолецитальные (желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него – птицы).

4 Эмбриональный период Внутриутробный период продолжается от момента зачатия до рождения и состоит из двух фаз: эмбриональной (первые 2 месяца) и фетальной (3-9 месяц).

Эмбриональный период - период жизни особи с момента слияния сперматозоида с яйцом и образования зиготы до рождения или выхода из яйцевых оболочек.

У многоклеточных животных в эмбриональном периоде выделяют три основных этапа развития: дробление, гаструляцию и первичный органогенез.

Благодаря сокращению мышечной оболочки и движению ресничек эпителия (внутренней оболочки) яйцевода яйцеклетка (женская половая клетка) продвигается по маточной трубе, а навстречу ей движется огромное количество сперматозоидов (мужских половых клеток). Оплодотворение - это слияние яйцеклетки и сперматозоида. Оно происходит в верхней трети яйцевода. Наилучшие условия для этого обычно в пределах 12 ч. после выхода яйца из яичника (овуляции). Многочисленные сперматозоиды приближаются к яйцеклетке, окружают ее, вступают в контакт с ее оболочкой. Однако в яйцеклетку проникает только один, после чего вокруг яйцеклетки образуется оболочка оплодотворения, препятствующая проникновению других сперматозоидов. В результате слияния двух ядер с гаплоидными наборами хромосом образуется диплоидная зигота (клетка, которая является одноклеточным организмом нового дочернего поколения). У человека 46 хромосом, т.е. 23 пары - диплоидный набор. В зрелых половых клетках число хромосом становится простым, непарным или гаплоидным, т.е. от каждой пары хромосом индивида в половой клетке остается только одна. К концу первых суток после оплодотворения начинается первый период развития зародыша - дробление. У человека дробление полное и асинхронное, т.е. в результате клетка напоминает по форме ягоду малина. Процесс дробления происходит в яйцеводе и заканчивается через 3-4 суток, по мере продвижения зародыша, которое обеспечивается перистальтическими сокращениями мышц стенки яйцевода и колебанием ресничек. Питание зародыша осуществляется благодаря запасам желтка в яйцеклетке. В результате процесса дробления образуется многоклеточный шаровидный зародыш с полостью внутри, который через пять суток попадает в матку. Около двух суток он остается в ее полости, яйцеклетка движется к месту прикрепления - имплантации. Матка имеет толстые мышечные стенки и выстлана слизистой оболочкой. На 7-е сутки после оплодотворения зародыш начинает внедряться в слизистую оболочку благодаря выделению ферментов, разрушающих ее, и постепенно погружается в нее (процесс продолжается 48 часов). Наружный слой зародыша начинает вырабатывать гормон -хориальный гонадотропин. Именно он сигнализирует организму матери: наступила беременность, нужно перестраиваться! Одновременно на 7-е сутки начинается процесс гаструляции (образование зародышевых листков), а также образование зародышевых оболочек, обеспечивающих необходимые условия для развития. На 14-15-е сутки устанавливается непосредственный контакт между ворсинками формирующихся оболочек зародыша и сосудами матери, в результате чего питание и снабжение зародыша кислородом начинает осуществляться непосредственно из крови матери (к этому моменту запас питательных веществ в яйцеклетке истощен). Начинается образование пуповины и плаценты - детского места (3-я неделя), которое все девять месяцев будет обеспечивать ребенка кислородом, питанием и выводить ненужные для его организма вещества. За гаструляцией следует дифференцировка зародышевых листков и процессы органогенеза (закладывается хорда - предтеча позвоночника; возникают первые кровеносные сосуды). 21-й день - уже сформировалось и стало биться сердце! Формируется головной и спинной мозг. На 4-ой неделе формируются глазные впадины, появляются зачатки ручек и ножек. Эмбрион напоминает крошечную ушную раковину и окружен небольшим количеством околоплодных вод. Начинаются закладка и развитие внутренних органов: кишечника, печени, почек, мочевыводящих путей. Совершенствуются, развиваются сердце и мозг. К 35-му дню начинают формироваться нос и верхняя губа. Если в это время нормальное развитие плода нарушено, зачатки могут не срастись, как положено, и ребенок родится с "заячьей губой". На 6-ой неделе продолжают расти ручки и ножки, только пальчиков на них пока нет. Образовался важнейший орган иммунной системы - вилочковая железа (тимус). Она имеет размеры большие, чем все эндокринные железы, вместе взятые. Ее роль на этот момент не выяснена досконально, однако, можно с уверенностью утверждать чрезвычайную важность тимуса для развития плода. По-видимому, вилочковая железа сама осуществляет иммунологический надзор за развивающимися клетками ребенка или же принимает в этом процессе активное участие. На 7-ой неделе совершенствуется строение сердечка: формируются перегородки, крупные сосуды, сердце становится четырехкамерным. В печени уже появились желчные протоки, бурными темпами идет развитие эндокринных желез. Растет, развивается мозг. Оформились ушные раковины, на конечностях появились пальчики. Эмбрион уже двигается, но пока слишком мал, чтобы мать эти движения почувствовала. На 8-ой неделе интенсивный процесс развития внешних и внутренних органов, особенно половых. До 8 недель пол по внешнему виду определить было невозможно. Теперь под влиянием генов Y-хромосомы у мальчиков формируются мужские гонады (яички) и начинают вырабатывать тестостерон - мужской половой гормон. А у девочек наружные половые органы пока не изменены. К концу 8-й недели завершается зародышевый период развития: все основные структуры и системы органов дифференцированы (рост к концу второго месяца - 3 см).

5

 Критические периоды развития клетки как биологической системы. Имеются данные о критических периодах развития отдельных клеточных органелл.

1-ый критический период от 0 до 10 дней – нет связи с материнским организмом, эмбрион или погибает или развивается ( принцип «все или ничего»). Питание зародыша аутотропное, за счет веществ, содержащихся в яйцеклетке, а затем за счет жидкого  секрета  трофобласта в полости бластоцисты.

2-ой критический период  от 10 дней до 12 недель происходит формирование органов и систем, характерно возникновение множественных пороков развития. Значение имеет не столько срок гестации, сколько длительность воздействия неблагоприятного фактора.

3-ий критический период (внутри 2-го)  3-4 недели – начало формирования плаценты и хориона. Нарушение ее развития приводит к плацентарной недостаточности и как следствие – к гибели эмбриона или развитию гипотрофии плода.

4-ый критический период  12-16 недель, формируются наружные половые органы. Введение эстрогенов может привести к дисплазии эпителия матки и влагалища во взрослом состоянии.

5-ый критический период 18-22 недели, завершение формирования нервной системы.

  Факторы, влияющие на развитие плода, делятся на экзогенные и эндогенные:

- физические (температура, газовый состав воздуха, ионизирующая радиация и др.);

- химические (вещества, применяемые в промышленности, в быту, проходящие через плацентарный барьер, лекарственные вещества, наркотические препараты, избыток витаминов А, Д, С, алкоголь, никотин и т.д.);

- алиментарные (неполноценное питание в 3-4 раза увеличивает пороки развития плода);

- хроническое кислородное голодание (хроническая гипоксия приводит к гипотрофии);

- экстрагенитальная патология (инфекционная патология, вирусная инфекция, перенесенная беременной).

  Ионизирующее излучение: малые дозы излучения приводят к нарушению обмена, наследственным болезням (увеличивается число пороков, рак щитовидной железы и др.).

6

Выделяют 5 основных групп тератогенных факторов:

Первая группа:  ионизирующая радиация,  органические и неорганические химические соединения, загрязняющие воду,  воздух, почву, продукты питания: промышленные выбросы,   тяжелые металлы  (ртуть, свинец, кадмий), сельскохозяйственные яды, в том числе  пестициды, инсектициды, минеральные удобрения, продукты нефтепереработки и неполного сгорания  горюче–смазочных материалов,   профессиональные вредности, связанные с радиацией и химическим производством. 

Вторая группа: токсичные вещества, добровольно  принимаемые внутрь или вдыхаемые в период беременности:  алкоголь, наркотики, табачный дым.  

Третья группа: лекарственные средства,  применяемые в период беременности  - к ним относятся антибиотики, аспирин, снотворные, противоэпилептические   средства, половые гормоны и другие.

Четвертая группа:  внутриутробные инфекции (краснуха,  цитомегалия, токсоплазмоз,  сифилис, ВИЧ). 

Пятая группа:  нарушения обмена веществ  у беременных женщин - сахарный диабет,  дефицит незаменимых аминокислот и витаминов,  особенно фолиевой кислоты,   дефицит    йода и  селена, голодание, недосыпание. Что касается последнего, то во время беременности лучше всего не спать на двухъярусной кровати, на ней не только сложно выспаться, но и просто опасно спать на втором ярусе.

Причина 60-70% врожденных пороков развития до сих пор остается неизвестной. Предполагают, что их возникновение может быть обусловлено сочетанным влиянием многих неблагоприятных факторов окружающей среды или  комбинацией  наследственных и  тератогенных  воздействий.

Старение представляет собой всеобъемлющий процесс, охваты­вающий все уровни структурной организации особи —от макромолекулярного до организменного.

Ряд наблюдений легли в основу достаточно распространенной точки зрения о наследуемости продолжительности жизни и, следо­вательно, наличии генетического контроля или даже особой генети­ческой программы старения. Представ­ление о величине наследуемости продолжительности жизни полу­чают, определяя коэффициент наследуемости. Результаты оценки степени генетического контроля старения путем расчета коэффициента наследуемости долгожительства ука­зывают лишь на отсутствие специальной генетической программы старения. При отсутствии специальных генов или целой программы, прямо определяющих развитие старческих признаков, процесс старения находится тем не менее под генетическим конт­ролем путем изменения его скорости. Называют разные пути такого контроля. Во-первых, этоплейотропное действие, свойственное многим генам. Во-вторых, со временем в генотипах соматических клеток,особенно в области регуляторных нуклеотидных последовательно­стей, накапливаются ошибки (мутации). Следствием этого является нарастающее с возрастом нарушение работы внутриклеточных ме­ханизмов, процессов репликации, репарации, транскрипции ДНК. В-третьих, генетические влияния на скорость старения могут быть связаны с генамипредрасположенности к хроническим заболе­ваниям, таким, как ишемическая болезнь сердца, атеросклероз сосудов головного мозга, гипертония, наследуемым по полигенному типу.

В ис­следованиях зависимости скорости старения от условий жизни, проводимых на лабораторных животных,используют следующие признаки: 1) состояние белков соединительной ткани коллагена и эластина; 2) показатели сердечной деятельности и кровообращения; 3) содержание пигмента липофусцина в клетках нервной системы и сердца; 4) показатели произвольной двигательной активности; 5) способность к обучению.

Влияние социально-экономических условий на длительность жиз­ни может быть оценено путем сравнения названного показателя для одной и той же популяции (например, население страны), но в разные исторические периоды или же путем сопоставления продол­жительности жизни в двух популяциях, различающихся по жизнен­ному уровню и сосуществующих в одно и то же историческое время.

Геронтология — это наука, изучающая биологические механизмы и процессы, обуславливающие и сопровождающие старение живых существ, а также способы замедления старения и увеличения продолжительности жизни.

Гериатрия — медицинская дисциплина, занимающаяся изучением особенностей заболеваний у лиц пожилого и старческого возраста и их лечением.

______Существует огромное количество классификаций теорий старения, исследователи выделяют множество групп- теории программированного старения, стохастические (вероятностные), молекулярно-генетические, нейроэндокринные и многие другие. Разделение это весьма условно, т.к. теории должны охватывать все механизмы, задействованные в процессе старения. Механизмы старения достаточно сложны и многообразны. Сегодня существует несколько альтернативных теорий, которые отчасти противоречат друг другу, а отчасти – дополняют. Сейчас научный мир все больше интересуется проблемой старения, созданы институты по этой проблеме, исследовательские группы и т.д. Накапливается огромный объем данных и, может быть уже очень скоро процесс старения будет разгадан.

Проблемы регенерации и трансплантации.

1

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса — волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления.

2Хорошо выражена репаративная регенерация у некоторых кишечно­полостных и ресничных червей, в связи с чем гидры и планарии стали классическими объектами для изучения этого явления. Ракообразные восстанавливают утраченные конечности, антенны, глаза. Хвостатые амфибии и личинки бесхвостых восстанавливают конечности, хвост и не­которые другие органы. У млекопитающих и человека регенерация раз­личных тканей выражена в неодинаковой степени. Эпителиальная ткань в покровах кожи, слизистых оболочек, серозных покровов обладает вы­сокой способностью к репаративной регенерации. Хорошими регенера­ционными свойствами обладает соединительная, мышечная и костная ткань. Хрящевая ткань регенерирует слабо.

Восстановление органа происходит только тогда, когда сохраняется хотя бы остаток этого органа и не потеряны коррелятивные связи со всем организмом. Конечности аксолотля и тритона способны к регенера­ции при ампутации на любом уровне. Но если удален и пояс конечно­стей, регенерации не происходит. Ампутированная мышца у птиц и гры­зунов способна к восстановлению, если осталась хотя бы небольшая культя.

3

О патологической регенерации говорят тогда, когда в результате тех или иных причин имеется извращение регенераторного процесса в виде избыточного или недостаточного образования регенерирующей ткани (гипер- или гипорегенерация), а также превращения в процессе регенерации одного вида ткани в другой.  Примерами патологической регенерации могут служить гиперпродукция соединительной ткани с образованием келоида, избыточная регенерация периферических нервов и избыточная костная мозоль при срастании перелома, вялое заживление ран и метаплазия эпителия в очаге хронического воспаления.  Патологическая регенерация обычно возникает при нарушении общих и местных условий регенерации (нарушение иннервации, белковое и витаминное голодание, хроническое воспаление и т. д.).

4

Трансплантация — в медицине пересадка какого-либо органа или ткани, например, почкисердцапеченилёгкогокостного мозгастволовых гемопоэтических клетокволос.

Различают следующие виды трансплантации:

  • аутотрансплантация, или аутологичная трансплантация — реципиент трансплантата является его донором для самого себя. Например, аутотрансплантация кожи с неповреждённых участков на обожжённые широко применяется при тяжёлых ожогах. Аутотрансплантация костного мозга или гемопоэтических стволовых клеток после высокодозной противоопухолевой химиотерапии широко применяется при лейкозахлимфомах и химиочувствительных злокачественных опухолях.

  • изогенная трансплантация — донором трансплантата является 100% генетически и иммунологически идентичный реципиенту однояйцевый близнец реципиента.

  • аллотрансплантация, или гомотрансплантация — донором трансплантата является генетически и иммунологически отличающийся человеческий организм.

  • ксенотрансплантация, или межвидовая трансплантация — трансплантация органов от животного другого биологического вида.

5

Трансплантация в медицинской практике

В тех случаях, когда не удается вылечить орган, когда он не может реге­нерировать, но необходим, остается один метод - заменить его таким же естественным или искусственным органом.

При пластических операциях, проводимых с целью восстановления формы и функции какого-либо органа или деформированной поверхно­сти тела, распространена пересадка кожи, хряща, мышц, сухожилий, кровеносных сосудов, нервов, сальника.

Основы эволюционного учения.

1

Популяция человека – группа людей, занимающих одну территорию и свободно вступающих в брак.

Демографическая структура.

- размер;

- рождаемость;

- смертность;

- возрастная структура популяции;

- род занятий;

- экономическое состояние;

- географические и климатические условия – генетическая структура популяции;

- система браков;

- факторы, изменяющие частоты генов;

- частоты генов и генотипов;

- коэффициент инбридинга.

Вид Homo Sapience – крупная эволюционная единица. Есть группы людей с генетическими различиями. Эти группы можно считать популяциями. Надо знать, где границы популяции, для определения наибольшее значение имеет система браков. Чисто панмиксных популяций не существует.

В популяциях в результате действия эволюционных факторов насчитывается разное количество людей:

1,5–4 тысячи – дем («народ»)1-2% лиц из других популяций; 80-90% внутригрупповых браков; 20% - прирост населения за 25 лет;

Менее 1,5 тысяч – изолят. 1% лиц, пришедших из других популяций; 90% внутригрупповых браков; 20% - прирост населения за 25 лет.

Если изолят существует более 100 лет, то все члены изолята  - троюродные братья и сестры.

Выделяют 3 группы изолятов:

1)                      религиозные изоляты (распространены были в Средние века и Новое время), секты;

2)                      палеолитические изоляты – существуют на островах, в Сибири;

3)                      географические изоляты. Отделены от других селений различными преградами (водными, лесными и другими).

Факторы, повышающие изменчивость:

- мутационный процесс;

- рекомбинации;

- поток генов.

Не влияют на изменчивость:

- отбор;

- дрейф генов.

2

Закон Харди — Вайнберга — это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствоватьуравнению:

Где  — доля гомозигот по одному из аллелей;  — частота этого аллеля;  — доля гомозигот по альтернативному аллелю;  — частота соответствующего аллеля;  — доля гетерозигот.

3

Генофонд популяций человека является результатом наложения многочисленных и разнонаправленных векторов отбора, обеспечивающего сохранение в каждом поколении сравнительно приспособленных к данным условиям генотипов. При этом с течением времени влияние отбора на генетическую структуру популяций людей снижается в основном благодаря успехам лечебной и профилактической медицины, а также социально-экономическим преобразованиям цивилизации.

4