
- •2. Кинематический анализ механизмов
- •2.1. Цели и задачи кинематического анализа
- •2.2. Графический метод кинематического анализа
- •Последовательность кинематического анализа:
- •2.3. Графоаналитический метод кинематического анализа
- •2.4. Планы скоростей и ускорений шарнирного четырёхзвенник
- •2.6. Планы скоростей и ускорений кулисного механизма
- •Угловая скорость коромысла 3 вычисляется по формуле
- •2.7. Аналитический метод кинематического анализа
- •2.7.1. Общие сведения о методе
- •Метод замкнутых векторных контуров (метод Зиновьева) [4] удобен для кинематического анализа практически всех используемых в технике несложных рычажных механизмов;
- •2.7.2. Функция положения. Аналог скорости. Аналог ускорения
- •2.7.3. Аналитическое исследование кривошипно-ползунного механизма
- •Решение задачи о положениях
- •Решение задачи о скоростях
- •Решение задачи об ускорениях
2.6. Планы скоростей и ускорений кулисного механизма
Чтобы построить план скоростей, необходимо составить векторное уравнение скоростей. При этом следует иметь в виду, что точка А1 (рис. 2.5), принадлежащая кривошипу 1, и точка А2, принадлежащая ползуну 2 и совпадающая на плане механизма с точкой А1, вращаются вокруг оси О с одинаковыми линейными и угловыми скоростями:
VА1 = VА2 и 1 = 2.
Рис.
2.5. Построение планов скоростей и
ускорений кулисного механизма
Если задана величина 1, то величину линейной скорости рассчитывают по формуле
VА1 = VА2 = 1 LОА, м/с.
Векторы скоростей VА1 и VА2 направлены перпендикулярно радиусу ОА1. Скорость точки А3, принадлежащей кулисе 3, можно найти по векторному уравнению скоростей
VА3 = VА2 + VА3А2,
где VА3А2 – вектор скорости точки А3 кулисы относительно точки А2 ползуна, параллельный прямой А1В плана механизма.
После выбора
масштаба плана скоростей v
(см. предыдущие примеры механизмов)
строят план скоростей. Из полюса Рv
(см. рис. 2.5) перпендикулярно отрезку ОА
плана механизма проводится вектор
скорости VА1,
совпадающий с вектором скорости
VА2
(см. рис. 2.5, вектор
).
Через точку а1
проводят прямую, параллельную прямой
А1В,
а через полюс Рv
– прямую, перпендикулярную А1В.
На их пересечении получают точку а3
и наносят направление векторов (стрелки),
руководствуясь векторным уравнением
скоростей.
Вычисляют величины скоростей:
,
м/с,
,
м/с,
где Рv a3 и а1 а3 – длины векторов, измеренные на плане скоростей.
Угловая скорость коромысла 3 вычисляется по формуле
,с-1.
Для построения плана ускорений составляются векторные уравнения
аА3
= аА2
+ а
+ а
,
аА3
= аВ
+ а
+ а
,
где аА2 – ускорение ползуна; а – ускорение Кориолиса точки А3 относительно А2 (возникает тогда, когда есть относительное движение двух точек с одновременным вращением их вокруг какой-либо оси; в данном случае точка А3 движется относительно А2, вместе они вращаются вокруг неподвижной точки В; направление вектора а определяется так: необходимо условно повернуть вектор скорости VА3А2 по направлению вращения кулисы 3 – это и будет направление ускорения Кориолиса); а – относительное ускорение точки А3 относительно А2 (его вектор параллелен А3В); аВ – ускорение точки В (аВ = 0, так как точка В неподвижна); а – нормальное ускорение точки А3 относительно В (направление вектора от А3 к точке В); а – тангенциальное ускорение точки А3 относительно В (вектор направлен перпендикулярно А3В).
Вычисление величины ускорения Кориолиса и нормальных ускорений можно произвести по формулам
аА2 =
а
=
LОА,
м/с2,
а = 23 VА3А2, м/с2,
а = LА3В, м/с2.
Масштаб плана ускорений выбирают, используя формулу
,
,
где Ра а'2 – длина вектора, изображающего ускорение аА2 на плане ускорений; она выбирается произвольно с таким расчётом, чтобы будущий план ускорений разместился на отведённом месте чертежа и масштаб был удобен для использования в дальнейших расчётах.
Остальные известные величины ускорений переводятся масштабом в векторные отрезки соответствующих длин:
,
мм;
,
мм.
Затем строится план ускорений. Из произвольно выбранного полюса – точки Ра – проводится вектор ускорения а с длиной Раа'2. Из точки а'2 перпендикулярно А2В проводится вектор ускорения а с длиной a'2k. Через точку k проводится прямая, перпендикулярная этому вектору. Таким образом, будет выполнено графическое изображение первого векторного уравнения ускорений из двух, ранее составленных. Затем приступают к построению второго векторного уравнения. Из полюса Ра параллельно прямой А3В проводится вектор ускорения а длиной Ра n2, а через точку n2 – перпендикулярная ему прямая до пересечения с прямой, проведённой ранее через точку k. На пересечении этих прямых получается точка а'3. Вектор, соединяющий точки Ра и а'3, – полное ускорение аА3 точки А3.
Угловое ускорение кулисы вычисляется по формуле
,
с-2,
где n2a'3 – длина вектора, изображающего на плане ускорений тангенциальное ускорение точки А3.
Направление углового ускорения определяется, как и в предыдущем примере (для кривошипно-ползунного механизма), по направлению условного вращения кулисы 3 вектором ускорения а : условно перенести этот вектор в точку А3 плана механизма и посмотреть, в каком направлении он будет «вращать» кулису.