Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GLAVA_1_Struktura.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
4.16 Mб
Скачать

Классификация кинематических пар

1. По элементам соединения звеньев кинематические пары делятся:

на высшие (они имеются, например, в зубчатых и кулачковых механизмах) – соединение звеньев друг с другом происходит по линии или в точке:

низшие – соединение звеньев друг с другом происходит по поверхности. В свою очередь низшие соединения делятся:

на вращательные

в плоских механизмах;

поступательные

цилиндрические

в пространственных

механизмах.

сферические

2. По количеству наложенных связей. Тело, находясь в пространстве (в декартовой системе координат X, Y, Z) имеет 6 степеней свободы. Оно может перемещаться вдоль каждой из трёх осей X, Y и Z, а также вращаться вокруг каждой оси (рис. 1.2). Если тело (звено) образует с другим телом (звеном) кинематическую пару, то оно теряет одну или несколько из этих 6 степеней свободы.

По количеству утраченных телом (звеном) степеней свободы кинематические пары делят на 5 классов. Например, если телами (звеньями), образовавшими кинематическую пару, утрачено по 5 степеней свободы каждым, эту пару называют кинематической парой 5-го класса. Если утрачено 4 степени свободы – 4-го класса и т.д. Примеры кинематических пар различных классов приведены на рис. 1.2.

Рис. 1.2. Примеры кинематических пар различных классов

По структурно-конструктивному признаку кинематические пары можно разделить на вращательные, поступательные, сферические, цилиндрические и др.

Кинематическая цепь

Несколько звеньев, соединённых между собой кинематическими парами, образуют кинематическую цепь.

Кинематические цепи бывают:

замкнутые

простые;

разомкнутые

сложные.

.

Чтобы из кинематической цепи получить механизм, необходимо:

– одно звено сделать неподвижным, т.е. образовать станину (стойку);

– одному или нескольким звеньям задать закон движения (сделать ведущими) таким образом, чтобы все остальные звенья совершали требуемые целесообразные движения.

Число степеней свободы механизма – это число степеней свободы всей кинематической цепи относительно неподвижного звена (стойки).

Для пространственной кинематической цепи в общем виде условно обозначим:

количество подвижных звеньев – n,

количество степеней свободы всех этих звеньев – 6n,

количество кинематических пар 5-го класса – P5,

количество связей, наложенных кинематическими парами 5-го класса на звенья, входящие в них, – 5,

количество кинематических пар 4-го класса – Р4,

количество связей наложенных кинематическими парами 4-го класса на звенья, входящие в них, – 4 и т.д.

W = 6n – 5P5 – 4P4 – 3P3 – 2P2 – P1.

Звенья кинематической цепи, образуя кинематические пары с другими звеньями, утрачивают часть степеней свободы. Оставшееся число степеней свободы кинематической цепи относительно стойки можно вычислить по формуле

Это структурная формула пространственной кинематической цепи, или формула Малышева, получена П.И. Сомовым в 1887 году и развита А.П. Малышевым в 1923 году.

Величину W называют степенью подвижности механизма (если из кинематической цепи образован механизм).

W = 3n – 2P5 – P4.

Для плоской кинематической цепи и соответственно для плоского механизма

Эту формулу называют формулой П.Л. Чебышева (1869). Она может быть получена из формулы Малышева при условии, что на плоскости тело обладает не шестью, а тремя степенями свободы:

W = (6 – 3)n – (5 – 3)P5 – (4 – 3) P4 .

Величина W показывает, сколько должно быть у механизма ведущих звеньев (если W = 1 – одно, W = 2 – два ведущих звена и т.д.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]