Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ida.final.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6 Mб
Скачать

Архитектруа перекрестных ссылок

В предыдущей главе говорилось, что не зависимо от типа, перекрестная ссылка состоит из двух разных частей – источника и приемника. Каждый из них связан с определенным линейным адресом. Причем с любым адресом может быть связано одновременно как несколько приемников, так и несколько источников.

Другими словами с каждым линейным адресом может быть ассоциирован список источников (приемников). А, следовательно, нужно быть готовыми для работы со списками. Но для начала разберемся с тем, какие типы перекрестных ссылок существуют, ибо для работы с ними используются различные функции.

В первом приближении их всего два. Это ссылки на код и ссылки на данные. Ссылки на код встречаются всякий раз, когда какая-то инструкция нарушает нормальное выполнение кода программы и изменяет (возможно, лишь при некоторых обстоятельствах) значение регистра – указателя команд.

Говоря проще – такие ссылки образуют все команды условного и безусловного перехода и вызова подпрограмм, такие как JMP, CALL, JZ и тому подобные.

С перекрестными ссылками на данные мы сталкиваемся всякий раз, когда какая-то инструкция обращается к данным, по их смещению. Например, LEA, MOV xx, offset и так далее, в том числе и DW offset MyData.

Но есть еще и третий тип, который кардинально отличается от первых двух уже тем, что является внутренним типом перекрестных ссылок IDA и грубо говоря, пользователем знать о его существовании, а уж тем более вникать в технические детали реализации совсем необязательно.

Однако, это помогает лучше понять работу многих команд, поэтому ниже мы его рассмотрим.

Разумеется, речь идет о «ссылке на следующую команду» (Ordinary flow в терминологии IDA). Именно с помощью его IDA и отслеживает выполнение программы. Это перекрестная ссылка указывает на следующую команду при нормальном исполнении программы. Покажем это на следующем примере:

seg000:0012 mov bx, [di] ;

seg000:0014 add di, 2 ;

seg000:0017 or bx, bx ;

seg000:0019 jz loc_0_21 ;

seg000:001B call bx ;

seg000:001D int 21h ;

seg000:001F jmp short Print ;

seg000:0021 ; ------------------------------------

seg000:0021

seg000:0021 loc_0_21:

seg000:0021 mov ah, 4Ch ; 

seg000:0023 int 21h ;

seg000:0023 start endp

Два цвета используются только лишь для облечения восприятия, – что бы было можно отличий пары приемник-источник друг от друга. Как видно, цепочка проходит сквозь все команды, пока не доходит до команды безусловного перехода. Тут она и обрывается.

Адрес перехода можно узнать по перекрестной ссылке типа «код», которая автоматически образуется здесь. Что это дает? Возможность трассировки программы, например, для определения адреса конца функции, который заканчивается, как правило RET, то есть так же инструкцией безусловной передачи управления без возврата в текущую последовательность команд, в отличие от CALL, которая после выполнения подпрограммы передает управление следующей за ней команде.

Словом, если все упростить, то нет никакого смысла выделять ссылку на следующую команду в отдельный тип. Она хорошо описывается одним лишь типом ссылки на код, поскольку текущая инструкция как бы вызывает следующую (ну во всяком случае фактически происходит именно так – или другими словами – текущая инструкция передает, или может передавать, управление следующей). Вот в этих случаях и создается ссылка Ordinary flow

“Скрытой” она объявлена по двум причинам. Первая из них очевидна – какой смысл захламнять текст лишней, никому не нужной информацией? Впрочем, IDA все же выделяет перекрестные ссылки на следующую команду. Точнее выделяет их отсутствие. Сплошная черта (в нашем примере в строке 0x21) как раз и говорит об том, что ссылка на следующую команду в данном месте отсутствует.

Вторая причина кроется в оптимизации. Если все остальные ссылки хранятся в bTree, которой обеспечивает не самый быстрый доступ к данным, то ссылки на следующую команду содержаться в флагах (смотри описании виртуальной памяти), что значительно ускоряет работу с ними. А поскольку IDA очень интенсивно использует их, то выигрыш в скорости весьма существенен.

Таким образом, Ordinary flow можно рассматривать как отдельный, самостоятельный тип ссылок, а с другой стороны, как частный случай раздновидности ссылок на код.

Предоставленные в распоряжение пользователя функции большей частью скрывают эти различия, но и то часть команд приходится выполнять с огорками, о чем и сказано в их описании.

Как будет показано ниже, IDA поддерживает еще и «уточняющий» тип – скажем Jump, call или offset. Но на самом деле это всего лишь флаг, или атрибут перекрестной ссылки и играет только информационную роль, и никакого другого влияния не оказывает.

С другой стороны два типа перекрестных ссылок на код и данные можно рассматривать вместе, поскольку операции с ними производятся аналогично, не зависимо от типа, но разными наборами функций.

Ссылки на следующую инструкцию при этом лучше не модифицировать без особой на то нужны, обращаясь к ним только на чтение, хотя и запись так же доступна.

Итак, рассмотрим работу со списком, о котором мы говорили выше. Как было сказано ранее, вся архитектура IDA базируется на линейных адресах и связанных с ними объектах и элементах. Но если с каждым линейным адресом мог был связан только один комментарий каждого типа и только одно имя, то источников и приемников у каждого адреса может быть сколько угодно. Причем один и тот же адрес может быть одновременно как источником одной перекрестной ссылки, так и приемником другой.

Например:

seg000:000C jnb loc_0_17

seg000:000E mov ah, 3Ch ; '<'

seg000:0010 xor cx, cx

seg000:0012 mov dx, 206h

seg000:0015 int 21h

seg000:0015

seg000:0015

seg000:0017

seg000:0017 loc_0_17 ; CODE XREF: seg00

seg000:0017 mov ds:word_0_1DA, ax

seg000:01DA*word_0_1DA dw 0 ; DATA XREF: seg000:0017w

Поэтому необходимо говорить о двух независимых списках – приемников и источников, да еще отдельных для каждого типа ссылок – для кода и для данных.

Возникает вопрос, – а куда входят ссылки на следующую инструкцию? Ответ – они вообще не входят в упомянутый выше список, так как физически хранятся отдельно. Но некоторые функции IDA эмулируют их присутствие в списке ссылок типа «код», однако, это приводит часто к путанице и запутывает понимание пользователя. Поэтому будем все же считать, что инструкции на следующую команду как бы сами по себе. Это значительно упрощает понимание.

Таким образом, перейдем к рассмотрению организации этого списка и работы с ним (поскольку не зависимо от хранимых данных, – работа со всеми списками идентична). Но при ближайшем рассмотрении (и залезании с позволения так сказать интимную область IDA) никакого списка нет, а есть только двоичное дерево, в узлах которого и хранятся перекрытые ссылки в виде (from, to). При необходимости IDA просматривает дерево и извлекает все элементы, адреса которых совпадают с запрошенным.

Но, увы, доступа к Btree IDA не предоставляет, но дает функции, работающие с перекрестными ссылками исключительно, как с односвязным списком. То есть это Rfirst (получение первого элемента) и Rnext (получение всех последующих элементов).

При этом работа идет не с индексами (которых попросту нет), а исключительно со значениями элементов списка. Таким образом, Rnext принимает линейный адрес и, просматривая двоичное дерево, выдает следующую за ним перекрестную ссылку указанного типа или –1, когда список исчерпан.

Таким образом, Rnext(0) с первого взгляда равносильна Rfist, которая становится попросту не нужна. На самом деле все немного запутаннее. И понять это автор смог только после того, как связался с разработчиком IDA и обратился к нему за разъяснениями.

На самом деле Rnext никогда не возвращает ссылок на следующую инструкцию. Они хранятся отдельно и поэтому выпадают из поля зрения Rnext. Но вот Rfist действует иначе. Она проверяет – существует ли ссылка на следующую инструкцию и если да, то возвращает в первую очередь ее. В противном случае – первый элемент списка.

А теперь вообразим себе следующую ситуацию. Пусть у нас имеется следующий код:

seg000:0000 push ax ; CODE XREF: seg000:2864p

seg000:0000 ;  приемник

seg000:2864 call bx ;  источник

seg000:2869 loc_0_286 ; CODE XREF: seg000:2864p

seg000:2869 inc si ;  приемник

seg000:2892 loc_0_2892: ; CODE XREF: seg000:2864p

seg000:2892 ;  приемник

seg000:2892 cmp byte ptr [si], 22h ; '"'

Что будет если попытаться просмотреть список приемников в строке 0x2864? По логике Rfirs должна возвратить адрес ссылки на следующую команду, то есть 0x2869. Если теперь передать его Rnext то, по логике она должна будет возвратить следующий на ним приемник, то есть 0x2892, а приемник по адресу 0х0 окажется «вне поля зрения». Так ли это? На самом деле нет! Rnext сперва проверяет – является ли переданный ей адрес ссылкой на следующую команду, и если да, то начинает просмотр с начала списка!

Однако, Функции xfirst0 ведут себя иначе и не выполняют этой дополнительной проверки, в остальном же они ничем другим не отличаются от своих собратьев.

Зачем знать все эти подробности? Да просто работать программно с перекрестными ссылками придется намного чаще, чем бы этого хотелось. Дело в том, что IDA может отображать список приемников, как в виде комментариев, так и в окне списка (подробности смотри выше в главе ALMA MATER), но вот никак не отображает источники, считая что «они и так очевидны».

Но это на самом деле не так, в случае с командами по типу “CALL BX” – и возникает естественная потребность посмотреть, – а куда же передается управление. Конечно, IDA не отслеживает значение регистра BX автоматически и не создает в этом месте перекрестные ссылки, но вот человек это сделать очень даже может.

А вот оставшуюся мелочь – перейти по требуемому адресу (или посмотреть их список) интерактивно решить, видимо, невозможно. Поэтому приходится прибегать к языку скриптов и самостоятельно просматривать список значений.

Кстати, для облегчения навигации по файлу его можно добавить в комментарий к инструкции. Это, по-видимому будет наилучшим решением.

Подробнее об архитектуре перекрестных ссылок рассказано в описании функций, которые приведены ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]