Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21-35_voprosy.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
147.33 Кб
Скачать

Связь в микроволновом диапазоне

Передача данных в микроволновом диапазоне (Microwaves) использует высокие частоты и применяется как на коротких, так и на больших расстояниях. Главное ограничение заключается в том, чтобы передатчик и приемник были в зоне прямой видимости. Используется в местах, где использование физического носителя затруднено. Передача данных в микроволновом диапазоне при использовании спутников может быть очень дорогой.

Инфракрасная связь

Инфракрасные технологии (Infrared transmission), функционируют на очень высоких частотах, приближающихся к частотам видимого света. Они могут быть использованы для установления двусторонней или широковещательной передачи на близких расстояниях. При инфракрасной связи обычно используют светодиоды (LED – Light Emitting Diode) для передачи инфракрасных волн приемнику. Инфракрасная передача ограничена малым расстоянием в прямой зоне видимости и может быть использована в офисных зданиях.

  1. Модель открытых систем OSI

Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы.  В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.  Физический уровень имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие.  Одной из задач канального уровня является проверка доступности среды передачи. Другая задача канального уровня – реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра. Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Внутри одной сети доставка данных обеспечивается канальным уровнем, а вот доставкой данных между различными сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.  Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями. Транспортный уровень обеспечивает приложениям или верхним уровням стека – прикладному и сеансовому – передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное – способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.  Сеансовый уровень обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.  Представительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например, в кодах ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.  Прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением.  Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.  Три нижних уровня – физический, канальный и сетевой – являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.  Три верхних уровня – прикладной, представительный и сеансовый - ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.  Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений.  Столь подробное рассмотрение модели OSI/ISO связано с тем, что при разработке стандартов и спецификации по сетевой безопасности специалисты ориентируются на эту перспективную модель. Так в "Общих критериях" приводится распределение функций безопасности по уровням эталонной семиуровневой модели OSI. 

  1. Адресация. Структура IP-адреса. Расчет адреса подсети и адреса компьютера.

В сети на базе протокола TCP/IP конечные устройства получают уникальные адреса: четырехбайтный IP-адрес. Этот адрес используется на сетевом уровне эталонной модели OSI; Это уникальный 32-разрядный адрес. Данный адрес разбивается на две части. Первая часть адреса идентифицирует сеть, в которой располагается устройство; вторая - само устройство. Такая схема соответствует двухуровневой адресной иерархии.

В последнее время поле номера сети в адресе стало называться сетевым префиксом, так как первая порция каждого IP-адреса идентифицирует номер сети. Все хосты в определенной сети имеют один и тот же сетевой префикс, но при этом они должны иметь уникальные номера хостов. Аналогично, два любых расположенных в разных сетях хоста должны иметь различные сетевые префиксы, но они могут иметь одинаковые номера хостов.

Для обеспечения гибкости в назначении адресов компьютерным сетям разработчики определили, что адресное пространство протокола IP должно быть разделено на три основных класса - A, B и C. Каждый из этих основных классов фиксирует границу между сетевым префиксом и номером хоста в разных точках 32-разрядного адреса.

Адрес класса A предназначен для идентификации устройств в крупных сетях. Каждый адрес класса A имеет 8-разрядный префикс сети, в котором старший бит равен "0", а следующие семь бит используются для определения номера сети. Для задания номера хоста служат оставшиеся 24 бит. В настоящий момент все адреса класса А уже выделены, так что получить его вряд ли возможно. Сети класса А так же обозначаются, как "/8", поскольку адреса этого класса имеют 8-разрядный сетевой префикс. Адресное пространство класса A занимает 50% общего адресного пространства в протоколе IP.

Адрес класса B предназначен для сетей среднего размера, например в институте или крупной организации. Каждая сеть класса B имеет 16-разрядный префикс сети, в котором два старших бита равны "10", а следующие 14 бит используются для определения номера сети. Для задания номера хоста служат оставшиеся 16 бит. Сети класса В так же обозначаются, как "/16", поскольку адреса этого класса имеют 16-раз-рядный сетевой префикс. Адресный блок класса B занимает 25% общего адресного пространства в протоколе IP.

Адреса класса C предназначены для сети с небольшим числом компьютеров. Каждая сеть класса C имеет 24-разрядный префикс сети, в котором три старших бита равны "110", а следующие 21 бит используются для определения номера сети. Для задания номера хоста служат оставшиеся 8 бит. Сети класса C так же обозначаются, как "/24", поскольку адреса этого класса имеют 24-разрядный сетевой префикс. Адресный блок класса С занимает 12,5% общего адресного пространства в протоколе IP.

Помимо этих трех наиболее популярных классов адресов существует еще два дополнительных класса - D и E. В классе D старшие четыре бита равны "1110"; этот класс используется для поддержки многоадресной передачи данных. В классе E старшие четыре бита равны "1111", и этот класс зарезервирован для экспериментального использования.

Для удобства восприятия адресов в технической литературе, в прикладных программах и т. д., IP-адреса обычно записываются в виде четырех десятичных чисел, разделенных точками, причем каждое из этих чисел представляет значение одного октета IP-адреса. (один октет соответствует 8 бит адреса, т. е. можно сказать, что весь IP-адрес состоит из четырех октетов.)

Диапазоны значений адресов трех классов:

  • для класса А: 1.XXX.XXX.XXX - 126.XXX.XXX.XXX

  • для класса B: 128.0.XXX.XXX - 191.255.XXX.XXX

  • для класса C: 192.0.0.XXX - 223.255.255.XXX

В 1985 году определен стандартный процесс поддержки формирования подсетей или разделения единственного номера сети классов А, B и C на меньшие части. Формирование подсетей было введено для разрешения следующих проблем:

  • разбухания таблиц маршрутизации в маршрутизаторов Internet;

  • дефицита номеров сетей при необходимости расширения их числа.

Обе эти проблемы решались за счет добавления еще одного уровня иерархии к адресной структуре протокола IP. Вместо двухуровневой иерархии концепция формирования подсетей вводит поддержку трехуровневой иерархии.

Организация подсетей решает проблему роста таблиц маршрутизации за счет того, что структура подсетей корпоративной сети никогда не видима за пределами организации. Маршруты из Internet до любой подсети данного IP-адреса одинаковы вне зависимости от того, в какой подсети расположен получатель. Это стало возможным благодаря тому, что все подсети данного номера сети используют один и тот же сетевой префикс, но с разными номерами подсетей. Маршрутизаторы в частной сети должны различать отдельные подсети, но у маршрутизаторов в Internet все данные подсети определены единственной записью в таблицах маршрутизации. Это позволяет администратору частной сети вносить любые изменения в логическую структуру сети без влияния на размер таблиц маршрутизации на маршрутизаторах в сети Internet.

Формирование подсетей позволяет также решить вторую проблему, связанную с выделением организации нового сетевого номера или номеров при ее росте. Организации можно выделить один номер сети, затем администратор имеет возможность произвольно присваивать номера подсетей для каждой из своих внутренних сетей. Это позволяет внедрять дополнительные подсети без необходимости получения нового сетевого номера.

Формирование подсетей внутри частной сети организации позволяет извлечь следующие преимущества:

  • ограничение размера глобальных таблиц маршрутизации в сети Internet, так как администратор частной сети не нуждается в получении дополнительной адресной информации;

  • возможность по своему усмотрению реализовывать дополнительные подсети без получения новых номеров сетей.

Изменение топологии частной сети не влияет на таблицы маршрутизации в сети Internet, поскольку маршрутизаторы в Internet не имеют маршрутов в индивидуальные подсети организации - они знают только маршрут к самой сети.

Если маршрутизаторы в Internet используют только сетевой префикс адреса получателя для передачи трафика в совокупность подсетей, то маршрутизаторы внутри этой совокупности анализируют расширенный сетевой префикс для передачи трафика индивидуальным подсетям.

 После того как класс определен, хост может легко найти границу между битами номера сети и номера хоста в этой сети. Однако класс адреса ничем не может помочь в определении номера подсети. Для решения данного вопроса служит 32-разрядная маска подсети, позволяющая однозначно определить требуемую границу. Для стандартных классов сетей маски имеют следующие значения:

  • 255.0.0.0 - маска для сети класса А;

  • 255.255.0.0 - маска для сети класса B;

  • 255.255.255.0 - маска для сети класса C.

  1. Определение алгоритма. Свойства алгоритма. Способы описаний алгоритмов. Типовые (базовые) структуры, используемые при записи алгоритмов. Принцип разработки схем алгоритмов программ.

Под алгоритмом понимается конечная последовательность точно сформулированных правил решения некоторого касса задач. Алгоритм обладает следующими свойствами:

Определенность. Все действия, которые необходимо произвести должны быть строго определены.

Понятность. Все действия, которые необходимо произвести, должны быть однозначно поняты и выполнены каждым исполнителем алгоритма. Это свойство может быть интерпретировано как однозначность алгоритма, под которой понимается единственность толкования исполнителем правил выполнения действий и порядка их выполнения.

Конечность. Обязательность завершения каждого из действий, составляющих алгоритм и завершимость выполнения алгоритма в целом.

Результативность. Если алгоритм применим к данной задаче, то после конечного числа шагов должен быть получен результат.

Массовость. Возможность применения данного алгоритма для решения класса задач, отвечающих общей постановке задачи.

Правильность. Способность алгоритма давать правильные результаты решения поставленных задач.

Каждое правило алгоритма записывается в виде повелительного предложения, понимаемого исполнителем алгоритма как команда на выполнение.

  1. Классификация типов данных в TURBO PASCAL. Порядковые типы данных. Функции ORD, PRED, SUCC.

При решении задач выполняется обработки информации различного характера. Это могут быть целые и дробные величины, строки. Для описания множества допустимых значений величины и совокупности операций, в которых может участвовать данная величина, используется указание ее типа данных. Тип данных (data type) - множество величин, объединенных определенной совокупностью допустимых операций. Каждый тип имеет свой диапазон значений и специальное зарезервированное слово для описания. В Паскале для описания типа в общем случае используется зарезервированное слово type.

Формат:

Type

<имя типа>=<значения типа>;

Все типы данных можно разделить на скалярные и структурированные (составные). Скалярные типы, в свою очередь, делятся на стандартные и пользовательские. К стандартным типам относятся целочисленные, вещественные, литерные, булевские типы данных и указатели.

Пользовательские типы разрабатываются пользователями системы Турбо Паскаль.

К порядковым типам относятся целые, логический, символьный, перечисляемый и тип-диапазон.

Целые типы. Диапазон возможных значений целых типов зависит от их внутреннего представления, которое может занимать один, два или четыре байта

ЦЕЛЫЕ ТИПЫ

НАЗВАНИЕ

Длина,

байт

Диапазон значений

Byte

1

0…255

ShortInt

1

-128…+127

Word

2

0…65535

Integer

2

-32768…+32767

LongInt

4

-2 147 483 648…+2 147 483 647

При использовании процедур и функций с целочисленными параметрами следует руководствоваться «вложенностью» типов, т.е. везде, где может использоваться Word, допускается использование Byte (но не наоборот), в LongInt “входит” Integer, который, в свою очередь, включает в себя ShortInt.

При действии с целыми числами тип результата будет соответствовать типу операндов, а если операнды относятся к различным целым типам,- типу того операнда, который имеет максимальную мощность (максимальный диапазон значений). Возможное переполнение никак не контролируется, что может привести к недоразумениям.

Логический тип

ЛОГИЧЕСКИЕ ТИПЫ

Название

Длина, Байт

OS

Значение

BOOLEAN

1

Linux, DOS

False, True

BYTEBOOL

1

Совместим с С

False, True

WORDBOOL

2

Win

False, True

LONGBOOL

4

Win

False, True

Значениями логического типа может быть одна из предварительно объявленных констант FALSE (ложь) или TRUE (истина).Поскольку логический тип относится к порядковым типам, его можно использовать в операторе счётного типа.

Символьный тип. CHAR – занимает 1 байт. Значением символьного типа является множество всех символов ПК. Каждому символу присваивается целое число в диапозоне 0…255. Это число служит кодом внутреннего представления символа.

Для кодировки используется код ASCII (American Standart Code for Information Interchange – американский стандартный код для обмена информацией). Это 7-битный код, т.е. с его помощью можно закодировать лишь 128 символов в диапазоне от 0 до 127. В то же время в 8-битном байте, отведенном для хранения символа в Турбо Паскале, можно закодировать в два раза больше символов в диапазоне от 0 до 255. Первая половина символов ПК с кодами 0…127 соответствует стандарту ASCII. Вторая половина символов с кодами 128ююю255 не ограничена жёсткими рамками стандарта и может меняется на ПК разных типов.

Перечисляемый тип. Перечисляемый тип задаётся перечислением тех значений, которые он может получать. Каждое значение именуется некоторым идентификатором и рапологается в списке, обрамлённом круглыми скобками, напримерЖ

Type

          Colors = (red, white, blue);

Применение перечисляемых типов делает программы нагляднее.

Соответствие между значениями перечисляемого типа и порядковыми номерами этих значений устанавливается порядком перечисления: первое значение списке получает порядковый номер 0, второе – 1 и т.д. максимальная мощность перечисляемого типа составляет 65536 значений, поэтому фактически перечисляемый тип задаёт некоторое подмножество целого типа WORD и может рассматриваться как компактное объявление сразу группы целочисленных констант со значениями 0,1 и т.д.

Использование перечисляемых типов повышает надёжность программы, благодаря возможности контроля тех значений, которые получают соответствующие переменные.

Тип-диапазон. Тип-диапазон есть подмножество своего базового типа, в качестве которого может выступать любой порядковый тип, кроме типа-диапазона.

Тип-диапазон задаётся границами своих значений внутри базового типа:

<мин.знач.>..<макс.знач.>

Здесь <мин.знач.> - минимальное значение типа-диапазона.

<макс.знач.> - максимальное его значение.

Type

          Digit = ‘0’ ..’9’;

          Dig2 = 48 .. 57;