
- •1. Предмет и задачи теории сооружений (строит. Механики)
- •2. Что составляет основу концепции сил в оценке прочности соор-й
- •3. Представьте наглядно сх. Оценки прочности по нагрузке, усилиям и напряжениям.
- •4. Каковы основные практические задачи теории соор-й
- •6. Примеры гравитационной нагрузки и представьте предельное сост-е такой нагрузки
- •8. Как опред-ся боковая нагр-ка от несвязных сред, приведите ее предельное сост-е при кот-м такая нагр-ка имеет мах величину
- •Давление сыпучих тел на ограждения при отсутствии трения грунта о стенку
- •9. Как опред-ся нагрузка от ветра на соор-е
- •10. Что такое «нормативные» и «расчетные» нагрузки и их определение
- •11,12,13. Оценка прочности сооруж-й и их элементов по нагрузке
- •14. Поверочный и проектировочный расчеты по нагрузке
- •15. Примеры оценки прочности по нагрузке каких либо элементов соор-я
- •17. Каковы соотношения между напряжениями на различных площадках, проходящих через заданную точку соор-я
- •18. «Главные» напряжения, как определяются и какие усл-я позволяют назвать их главными?
- •19. Какие условия включает в себя полная система уравнений состояния соор-я при расчетах на прочность?
- •20. Каковы геометрич. Допущения инженерных методов определения напряжений (внутр. Усилий) в соор-ях и из элементах.
- •21. Внутренние усилия в каком либо сечении стержня. Виды внутр. Усилий
- •22. Осевое растяжение
- •23. Чистый изгиб
- •24. Сдвиг (срез)
- •26. Поперечный изгиб
- •27. Статический способ определения внутр. Усилий и на чем он основан
- •28. Как формируется банк предельных напряжений элемента соор-я и от чего он зависит?
- •29. Как формируется банк предельных усилий соор-й
- •30. Как формируется банк предельных нагрузок к-либо соор-я?
- •31. В чем состоит оценка эксплуатационных качеств соор-я по напряжениям?
- •41. Классификация соор-й. Основной признак классификации соор-й в курсе теории соор-й. Приведите классифик. Соор-й в соответствии с этим признаком
- •43. Какие соор-я с элементами работающими на изгиб вы знаете?
- •44. Какие соор-я с элементами работающими на изгиб с растяжением-сжатием знаете?
- •45. Покажите на примерах историю и развитие ферм. В каких отраслях стр-ва эти соор-я нашли применение
- •46. Покажите на примерах элементы и типы ферм. Какова расчетная модель фермы при определении внутр-х усилий в ее стержнях
- •47. Какие вы знаете способы нахождения усилий в стержнях ферм. На чем основаны? Покажите на примере как использовать тот или иной способ.
- •48. Покажите на примере как можно проанализировать геом. Структуру фермы? На чем основан этот анализ?
- •49. Как определяются усилия рабочего сост-я в фермах? Как можно оценит прочность стержней фермы?
- •50. Покажите историю появления балок и плит и развитие методов их расчета.
- •51. Каков порядок расчета статически определимых балок?
- •52. Объемлющие эпюры. Как можно построить такие эпюры в балках
- •53. Покажите историю появления и развития таких соор-й как рамы и арки
- •54. Покажите на примерах порядок расчета статически определимых рам. Какие принципы используются для построения оптимальной схемы расчета таких соор-й?
- •55. Покажите как рассчитываются трехшарнирные арки на вертик. Нагрузку
8. Как опред-ся боковая нагр-ка от несвязных сред, приведите ее предельное сост-е при кот-м такая нагр-ка имеет мах величину
Хотя причиной бокового давления является та же тяжесть, но ввиду отличия гипотезы разрушения от той, которая была рассмотрена ранее - при вычислении гравитационной нагрузки, мы разберем эту нагрузку отдельно.
Одним из примеров несвязных сред может выступать сыпучее тело - грунт, зерно и др. Оно представляет собой совокупность твердых частиц, сцепление между которыми незначительно. Сыпучее тело сохраняет свою форму лишь в том случае, если оно ограничено так называемым углом естественного откоса (углом внутреннего трения). Поэтому если сыпучее тело засыпано в сосуд, оно является причиной давления не только на горизонтальную, но и на вертикальную (наклонную) поверхность или причиной бокового давления.
Схему разрушения несвязного тела можно представить, если перемещать ограждение в сторону от засыпки (рис.2.12). Как показывает опыт, от сыпучего тела отделится некоторая часть ABC, которая сползает по некоторой поверхности BC и поверхности ограждения AB. Кривизна поверхности BC незначительна и ее можно считать плоскостью. Поэтому поверхность BC называют плоскостью обрушения, а часть сыпучего тела ABC - призмой обрушения (высота призмы - в направлении перпендикулярном плоскости чертежа).
Рассмотрим момент начала сползания, когда связи между грунтом и ограждением еще существуют, но напряжение в них максимально. К этому случаю могут еще применяться условия равновесия. Поэтому выделим призму обрушения и заменим действие отброшенных связей равнодействующими: E - в связях между ограждением и телом, а R - в связях между частицами самого тела по поверхности обрушения. Из-за отсутствия сцепления и наличия только сил трения эти равнодействующие при движении должны отклониться от перпендикуляра к поверхности на соответствующий угол трения (о - угол трения сыпучего тела об ограждение и - угол внутреннего трения - значения его для некоторых материалов приведены в табл. 2.5) (см. рис. 2.12).
Кроме реакций в связях на призму обрушения действует еще и ее собственный вес - G. Три силы E, R и G находятся в равновесии, если они пересекаются в одной точке и треугольник сил замкнут (см. рис.2.12). Для рассматриваемого момента предельного равновесия по теореме синусов (с учетом известного соотношения sin (900 -= cos ( получим
или
(2.6)
где - угол наклона плоскости обрушения к горизонту; - угол наклона грани ограждения к вертикали (см. рис.2.12).
Но в правую часть выражения (2.6) входит неизвестный угол , который определяет и вес призмы обрушения.
(2.7)
П р и м е р 2.8. Вывести формулу для определения давления сыпучего тела с горизонтальной поверхностью на вертикальное ограждение ( = 0). Углом трения сыпучего тела по ограждению пренебречь (о = 0). (Мы здесь не приводим чертеж к примеру 2.8, но при необходимости его легко можно выполнить самому читателю.)
Р е ш е н и е. Давление грунта при заданных параметрах определяется по формуле (2.6)
E = Gsin( - ) / cos( - ) = G tg ( - ).
Вес призмы обрушения равен (в направлении, перпендикулярном чертежу примем размер ее равный единице)
G = ( H2/2) ctg .
Тогда
E = ( H2/2) ctg tg ( - ).
Для определения угла обрушения составим дополнительное
уравнение
(2.7)
После преобразований (приведения к общему знаменателю, сокращений и замене 2 sincos на sin 2)
- sin 2() + sin 2 = 0,
откуда
2 = / 2 и / 4
Окончательно полное давление определится по формуле
E =( H2/2) tg 2( / 4 ( H2/ 2) , (2.8)
где = tg 2( / 4
Подобным образом можно получить давление и для любого другого случая. В таблице 2.6 приведены формулы для вычисления в формуле (2.8) при наклонном ограждении и негоризонтальной засыпке (читатель может получить их самостоятельно).