
- •1. Предмет и задачи теории сооружений (строит. Механики)
- •2. Что составляет основу концепции сил в оценке прочности соор-й
- •3. Представьте наглядно сх. Оценки прочности по нагрузке, усилиям и напряжениям.
- •4. Каковы основные практические задачи теории соор-й
- •6. Примеры гравитационной нагрузки и представьте предельное сост-е такой нагрузки
- •8. Как опред-ся боковая нагр-ка от несвязных сред, приведите ее предельное сост-е при кот-м такая нагр-ка имеет мах величину
- •Давление сыпучих тел на ограждения при отсутствии трения грунта о стенку
- •9. Как опред-ся нагрузка от ветра на соор-е
- •10. Что такое «нормативные» и «расчетные» нагрузки и их определение
- •11,12,13. Оценка прочности сооруж-й и их элементов по нагрузке
- •14. Поверочный и проектировочный расчеты по нагрузке
- •15. Примеры оценки прочности по нагрузке каких либо элементов соор-я
- •17. Каковы соотношения между напряжениями на различных площадках, проходящих через заданную точку соор-я
- •18. «Главные» напряжения, как определяются и какие усл-я позволяют назвать их главными?
- •19. Какие условия включает в себя полная система уравнений состояния соор-я при расчетах на прочность?
- •20. Каковы геометрич. Допущения инженерных методов определения напряжений (внутр. Усилий) в соор-ях и из элементах.
- •21. Внутренние усилия в каком либо сечении стержня. Виды внутр. Усилий
- •22. Осевое растяжение
- •23. Чистый изгиб
- •24. Сдвиг (срез)
- •26. Поперечный изгиб
- •27. Статический способ определения внутр. Усилий и на чем он основан
- •28. Как формируется банк предельных напряжений элемента соор-я и от чего он зависит?
- •29. Как формируется банк предельных усилий соор-й
- •30. Как формируется банк предельных нагрузок к-либо соор-я?
- •31. В чем состоит оценка эксплуатационных качеств соор-я по напряжениям?
- •41. Классификация соор-й. Основной признак классификации соор-й в курсе теории соор-й. Приведите классифик. Соор-й в соответствии с этим признаком
- •43. Какие соор-я с элементами работающими на изгиб вы знаете?
- •44. Какие соор-я с элементами работающими на изгиб с растяжением-сжатием знаете?
- •45. Покажите на примерах историю и развитие ферм. В каких отраслях стр-ва эти соор-я нашли применение
- •46. Покажите на примерах элементы и типы ферм. Какова расчетная модель фермы при определении внутр-х усилий в ее стержнях
- •47. Какие вы знаете способы нахождения усилий в стержнях ферм. На чем основаны? Покажите на примере как использовать тот или иной способ.
- •48. Покажите на примере как можно проанализировать геом. Структуру фермы? На чем основан этот анализ?
- •49. Как определяются усилия рабочего сост-я в фермах? Как можно оценит прочность стержней фермы?
- •50. Покажите историю появления балок и плит и развитие методов их расчета.
- •51. Каков порядок расчета статически определимых балок?
- •52. Объемлющие эпюры. Как можно построить такие эпюры в балках
- •53. Покажите историю появления и развития таких соор-й как рамы и арки
- •54. Покажите на примерах порядок расчета статически определимых рам. Какие принципы используются для построения оптимальной схемы расчета таких соор-й?
- •55. Покажите как рассчитываются трехшарнирные арки на вертик. Нагрузку
27. Статический способ определения внутр. Усилий и на чем он основан
Пусть под действием приложенной внешней нагрузки (рис.4.10) стержень находится в равновесии (дана самоуравновешенная система сил), т. е. для внешних сил выполняются условия
,
,
(4.14)
,
Любая часть стержня должна находиться в равновесии под действием внешней нагрузки и внутренних усилий. Разделим стержень сечением abсd на две части. Чтобы не нарушить их равновесия, усилия в рассеченных связях заменим интегральными силовыми характе-ристиками (рис. 4.10). Ими должны быть: продольное усилие N, изгибающие моменты Mx ,My; крутящий момент Mz; поперечные силы Qx, Qy (шесть параметров соответствуют шести степеням свободы плоского сечения или шести макросвязям). Для части стержня также должны быть справедливы уравнения равновесия (4.14), но только теперь в них войдут неизвестные внутренние усилия
x Px Qx 0, mx Mpx Mx 0,
y Py Qy 0, my Mpy My 0, (4.15)
z Pz N 0, mz Mpz Mz 0,
где Px ,Py, Pz - проекции приложенных к отсеченной части стержня внешних сил соответственно на оси x, y, z; Mpx, Mpy, Mpz - моменты внешних сил относительно осей x, y, z.
Допущение о малости перемещений дает возможность в уравнения (4.15) ввести геометрические параметры (размеры, очертания осей или углы наклона сил и их плечи) недеформированного состояния. Ввиду этого число уравнений равновесия равно числу неизвестных, система является статически определимой. При решении плоской задачи будут иметь место только три внутренних усилия (M, Q, N) и три уравнения равновесия.
Из системы (4.15) следует простой способ вычисления внутренних усилий в любом сечении свободного незамкнутого стержня, загруженного самоуравновешенной нагрузкой. Для этого необходимо провести сечение, рассмотреть любую отсеченную часть стержня и составить соответствующие уравнения равновесия.
Приведенные выше рассуждения показывают, что внутренние усилия представляют собой интегральную характеристику напряженного состояния сечения в целом, в то время как напряжения определяют состояние отдельной точки сечения. Из этих же рассуждений следует, что по известным внутренним усилиям с учетом принятых геометрических гипотез легко могут быть найдены напряжения. Внутренние усилия, таким образом, являются основным инструментом анализа напряженного состояния конструкции. Поэтому задачу вычисления внутренних усилий в строительной механике часто называют основной.
Решение задачи определения внутренних усилий и напряжений принято представлять в виде графиков - эпюр усилий и напряжений. Они показывают значения усилий и характер их изменения по длине каждого элемента сооружения и эпюр напряжений - по сечению. Эпюры дают возможность при соответствующем опыте мгновенно оценить состояние конструкции, увидеть опасные сечения (точки), наметить при необходимости способы перераспределения внутренних усилий.
В анализе напряженно деформированного состояния элементов конструкций задача определения внутренних усилий является наиболее трудоемкой, и хотя все необходимые вычисления при этом полностью основываются на составлении уравнений равновесия, для ее успешного решения требуется иметь прочные практические навыки.