
- •1. Предмет и задачи теории сооружений (строит. Механики)
- •2. Что составляет основу концепции сил в оценке прочности соор-й
- •3. Представьте наглядно сх. Оценки прочности по нагрузке, усилиям и напряжениям.
- •4. Каковы основные практические задачи теории соор-й
- •6. Примеры гравитационной нагрузки и представьте предельное сост-е такой нагрузки
- •8. Как опред-ся боковая нагр-ка от несвязных сред, приведите ее предельное сост-е при кот-м такая нагр-ка имеет мах величину
- •Давление сыпучих тел на ограждения при отсутствии трения грунта о стенку
- •9. Как опред-ся нагрузка от ветра на соор-е
- •10. Что такое «нормативные» и «расчетные» нагрузки и их определение
- •11,12,13. Оценка прочности сооруж-й и их элементов по нагрузке
- •14. Поверочный и проектировочный расчеты по нагрузке
- •15. Примеры оценки прочности по нагрузке каких либо элементов соор-я
- •17. Каковы соотношения между напряжениями на различных площадках, проходящих через заданную точку соор-я
- •18. «Главные» напряжения, как определяются и какие усл-я позволяют назвать их главными?
- •19. Какие условия включает в себя полная система уравнений состояния соор-я при расчетах на прочность?
- •20. Каковы геометрич. Допущения инженерных методов определения напряжений (внутр. Усилий) в соор-ях и из элементах.
- •21. Внутренние усилия в каком либо сечении стержня. Виды внутр. Усилий
- •22. Осевое растяжение
- •23. Чистый изгиб
- •24. Сдвиг (срез)
- •26. Поперечный изгиб
- •27. Статический способ определения внутр. Усилий и на чем он основан
- •28. Как формируется банк предельных напряжений элемента соор-я и от чего он зависит?
- •29. Как формируется банк предельных усилий соор-й
- •30. Как формируется банк предельных нагрузок к-либо соор-я?
- •31. В чем состоит оценка эксплуатационных качеств соор-я по напряжениям?
- •41. Классификация соор-й. Основной признак классификации соор-й в курсе теории соор-й. Приведите классифик. Соор-й в соответствии с этим признаком
- •43. Какие соор-я с элементами работающими на изгиб вы знаете?
- •44. Какие соор-я с элементами работающими на изгиб с растяжением-сжатием знаете?
- •45. Покажите на примерах историю и развитие ферм. В каких отраслях стр-ва эти соор-я нашли применение
- •46. Покажите на примерах элементы и типы ферм. Какова расчетная модель фермы при определении внутр-х усилий в ее стержнях
- •47. Какие вы знаете способы нахождения усилий в стержнях ферм. На чем основаны? Покажите на примере как использовать тот или иной способ.
- •48. Покажите на примере как можно проанализировать геом. Структуру фермы? На чем основан этот анализ?
- •49. Как определяются усилия рабочего сост-я в фермах? Как можно оценит прочность стержней фермы?
- •50. Покажите историю появления балок и плит и развитие методов их расчета.
- •51. Каков порядок расчета статически определимых балок?
- •52. Объемлющие эпюры. Как можно построить такие эпюры в балках
- •53. Покажите историю появления и развития таких соор-й как рамы и арки
- •54. Покажите на примерах порядок расчета статически определимых рам. Какие принципы используются для построения оптимальной схемы расчета таких соор-й?
- •55. Покажите как рассчитываются трехшарнирные арки на вертик. Нагрузку
20. Каковы геометрич. Допущения инженерных методов определения напряжений (внутр. Усилий) в соор-ях и из элементах.
Для решения задачи оценки прочности достаточно знать либо напряжения в связях, либо их деформации. Однако как видно из выражений (3.8), (3.10), (3.12), ни одна из этих групп уравнений (уравнения статики, геометрические и физические зависимости) отдельно не решается. Решение в окончательном виде на основе имеющихся математических методов получено только для ограниченного круга задач. Эти задачи рассматриваются в теории упругости. В практике проектирования большинства строительных конструкций обычно используют более простые инженерные методы определения напряжений. Из множества сооружений мы будем рассматривать только те, к которым эти методы применимы.
Инженерные методы оценки напряженно деформированного состояния основаны на геометрических допущениях (гипотезах). Вводимые гипотезы позволяют получить описание состояния бесконечного количества внутренних связей через конечное число параметров. Эти гипотезы зависят от соотношения размеров элементов сооружения.
Если какой-либо размер элемента мал по сравнению с двумя другими, как, например, в плитах, оболочках, складках, мембранах, то с большой достоверностью можно считать, что в направлении малого размера связи деформируются по линейному закону. Поэтому для тонкостенных конструкций в направлении малого размера принимается гипотеза Кирхгофа - Лява о прямой недеформированной нормали: нормаль перпендикулярная к срединной поверхности остается перпендикулярной к ней в деформированном состоянии и не изменяет своей длины.
Если элементы имеют два малых размера по сравнению с третьим - это нити, стержни, то используется допущение Сен-Венана в направлении двух малых размеров. Оно заключается в том, что сечения плоские и перпендикулярные к оси до деформации стержня остаются плоскими и перпендикулярными к оси после его деформации и не изменяют своей формы.
Когда размеры элементов сооружения во всех направлениях одинакового порядка (такие элементы называются массивами), геометрические гипотезы ввести затруднительно. Поэтому для таких сооружений инженерный метод не применим.
Приняв геометрические допущения, мы получаем возможность в теории тонкостенных конструкций положение всех связей определять через характеристики срединной поверхности, а в теории стержней - через характеристики оси. Гипотеза прямой недеформированной нормали позволяет деформированное ее положение определить пятью параметрами: тремя линейными (x1 , x2 , x3) и двумя угловыми (x4, x5) (рис. 4.1). Таким образом, чтобы установить положение всех связей, достаточно знать всего пять параметров, что аналогично замене бесконечного количества микросвязей между материальными точками пятью макросвязями.
Гипотеза плоских недеформируемых сечений дает возможность определить положение сечения в деформированном состоянии стержня шестью параметрами: тремя координатами (x1, x2, x3) и тремя углами поворота (x4 , x5 , x6) (рис. 4.2), то есть, бесконечное количество микросвязей заменить шестью макросвязями. Если деформация стержня происходит в одной плоскости, то остается всего три параметра (три макросвязи), указывающих положение всех связей в сечении (две линейных и одна угловая).
При построении методов расчета вводится еще одно допущение геометрического характера - о малости перемещений, которое дает возможность в уравнениях статики использовать геометрические параметры (расстояния, углы), взятые в недеформированном состоянии.