
- •1. Предмет и задачи теории сооружений (строит. Механики)
- •2. Что составляет основу концепции сил в оценке прочности соор-й
- •3. Представьте наглядно сх. Оценки прочности по нагрузке, усилиям и напряжениям.
- •4. Каковы основные практические задачи теории соор-й
- •6. Примеры гравитационной нагрузки и представьте предельное сост-е такой нагрузки
- •8. Как опред-ся боковая нагр-ка от несвязных сред, приведите ее предельное сост-е при кот-м такая нагр-ка имеет мах величину
- •Давление сыпучих тел на ограждения при отсутствии трения грунта о стенку
- •9. Как опред-ся нагрузка от ветра на соор-е
- •10. Что такое «нормативные» и «расчетные» нагрузки и их определение
- •11,12,13. Оценка прочности сооруж-й и их элементов по нагрузке
- •14. Поверочный и проектировочный расчеты по нагрузке
- •15. Примеры оценки прочности по нагрузке каких либо элементов соор-я
- •17. Каковы соотношения между напряжениями на различных площадках, проходящих через заданную точку соор-я
- •18. «Главные» напряжения, как определяются и какие усл-я позволяют назвать их главными?
- •19. Какие условия включает в себя полная система уравнений состояния соор-я при расчетах на прочность?
- •20. Каковы геометрич. Допущения инженерных методов определения напряжений (внутр. Усилий) в соор-ях и из элементах.
- •21. Внутренние усилия в каком либо сечении стержня. Виды внутр. Усилий
- •22. Осевое растяжение
- •23. Чистый изгиб
- •24. Сдвиг (срез)
- •26. Поперечный изгиб
- •27. Статический способ определения внутр. Усилий и на чем он основан
- •28. Как формируется банк предельных напряжений элемента соор-я и от чего он зависит?
- •29. Как формируется банк предельных усилий соор-й
- •30. Как формируется банк предельных нагрузок к-либо соор-я?
- •31. В чем состоит оценка эксплуатационных качеств соор-я по напряжениям?
- •41. Классификация соор-й. Основной признак классификации соор-й в курсе теории соор-й. Приведите классифик. Соор-й в соответствии с этим признаком
- •43. Какие соор-я с элементами работающими на изгиб вы знаете?
- •44. Какие соор-я с элементами работающими на изгиб с растяжением-сжатием знаете?
- •45. Покажите на примерах историю и развитие ферм. В каких отраслях стр-ва эти соор-я нашли применение
- •46. Покажите на примерах элементы и типы ферм. Какова расчетная модель фермы при определении внутр-х усилий в ее стержнях
- •47. Какие вы знаете способы нахождения усилий в стержнях ферм. На чем основаны? Покажите на примере как использовать тот или иной способ.
- •48. Покажите на примере как можно проанализировать геом. Структуру фермы? На чем основан этот анализ?
- •49. Как определяются усилия рабочего сост-я в фермах? Как можно оценит прочность стержней фермы?
- •50. Покажите историю появления балок и плит и развитие методов их расчета.
- •51. Каков порядок расчета статически определимых балок?
- •52. Объемлющие эпюры. Как можно построить такие эпюры в балках
- •53. Покажите историю появления и развития таких соор-й как рамы и арки
- •54. Покажите на примерах порядок расчета статически определимых рам. Какие принципы используются для построения оптимальной схемы расчета таких соор-й?
- •55. Покажите как рассчитываются трехшарнирные арки на вертик. Нагрузку
19. Какие условия включает в себя полная система уравнений состояния соор-я при расчетах на прочность?
В уравнениях равновесия (3.1) мы не использовали три уравнения моментов относительно координатных осей. Из этих уравнений (вывод их можно найти в указанных ранее источниках) выводится закон парности касательных напряжений
xy = yx ,
xz = zx , (3.7)
yz = zy .
С
учетом (3.7) и гипотезы сплошности для
каждой точки можно составить три
дифференциальных уравнения равновесия
(внешние гравитационные силы отсутсвут)
(3.8)
В них входят шесть непрерывных функций напряжений, то есть задача нахождения напряжений является статически неопределимой.
Физические соотношения
Так как для определения напряжений условий равновесия недостаточно, требуются дополнительные соотношения. Одни из них выведем на основании закона Гука - правила, позволяющего от удлинений в связях перейти к усилиям в них. Такие выражения носят название физических соотношений. Для традиционных строительных материалов они получены, а для новых материалов их устанавливают экспериментально. При этом свойства материалов определяют некоторые физико-механические постоянные, которые часто называют упругими постоянными. Если каждую связь или группу связей характеризовать одной постоянной, то физических уравнений получится чрезвычайно много. Для уменьшения количества таких соотношений примем гипотезу однородности материала. Она заключается в том, что свойства связей не зависят от их положения и одинаковы во всем объеме тела - сооружения. С учетом этой гипотезы и свойства идеальной упругости физико-механические свойства характеризуются тремя постоянными:
E - модулем продольной (нормальной) упругости, или модулем
Юнга;
- коэффициентом поперечной деформации, или коэффициентом Пуассона
G
- модулем сдвига, или постоянной Ляме
(G. Lame, 1795- 1870), который для упругого
изотропного тела не является независимым,
а связан с E
и
соотношением
.
(3.9)
При
абсолютной упругости изотропного
тела физические соотношения имеют
вид
(3.10)
где деформации x, y, z выражают удлинения связей в направлении осей x, y, z; а xy , yz, zx - сдвиг связей в соответствующих плоскостях xy, уz и zx.
Из соотношений (3.10) получаются зависимости деформаций от напряжений
(3.11)
Таким образом, три уравнения равновесия (3.8) дополняются шестью физическими соотношениями (3.10), но в них входят дополнительно и шесть деформаций. Чтобы привести в соответствие количество уравнений и неизвестных, добавим еще геометрические зависимости деформаций и перемещений.
Перемещение точки определяется тремя составляющими ux , uy , uz- линейными смещениями вдоль осей координат (рис.3.5). Деформации и перемещения связаны оотношениями, которые относительно просто получаются из геометрических соображений (рис. 3.5)
(3.12)
В пятнадцати полученных соотношениях (уравнений равновесия (3.8) - три, геометрических уравнений (3.12) - шесть, физических (3.10) - шесть) содержится пятнадцать неизвестных (шесть компонентов напряжений, шесть компонентов деформаций и три компонента перемещений). Они составляют полную систему. В математической теории упругости доказывается, что такая система имеет единственное решение. Однако математические трудности совместного решения этих уравнений до сих пор полностью не разрешимы.