Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБЩАЯ ХИМИЯ вопросы к экзамену.doc
Скачиваний:
20
Добавлен:
01.05.2025
Размер:
513.02 Кб
Скачать

12. Водородная связь. Условия образования водородной связи, механизм образования, свойства связи.

Водородная связь (ВС) - это своеобразная химическая связь. Она может быть межмолекулярной и внутримолекулярной.

Межмолекулярная ВС возникает между молекулами, в состав которых входят водород и сильно электроотрицательный злемент - фтор, кислород, азот, реже хлор, сера. Поскольку в такой молекуле общая электронная пара сильно смещена от водорода к атому электроотрицательного элемента, а положительный заряд водо­рода сконцентрирован в малом объеме, то протон взаимодействует с неподеленной электронной парой другого атома или иона, обобществ­ляя ее. В результате образуется вторая, более слабая связь, получив­шая название водородной.

Обычно ВС обозначают точками и этим указывают, что она намного слабее ковалентной связи (примерно в 15-20 раз). Тем не менее она ответственна за ассоциацию молекул.

ВС присутствует в спиртах, карбоновых кислотах, аминах, фенолах, белках и др. соединениях

Механизм образования ВС. ВС имеет частично электростатический, частично донорно-акцепторный характер. При этом донором является электроотрицательный элемент, а акцептором – Н. Н-F…H-F связь в молекуле HF сильно полярная и у Н освобождается орбиталь, .т.е. он превращается в ион. На эту орбиталь попадают неподеленные электронные пары атомов F соседней молекулы. У F 2S22P5

.. .. .. ..

H+ :F: H+ :F: H+ :F H− :F: , F – донор, Н - акцептор

.. .. .. ..

Наличием водородных связей объясняется более высокая температура кипения воды (100оС) по сравнению с водородными соединениями элементов подгруппы кислорода (Н2S, Н2Sе, Н2Те). В случае воды надо затратить дополнительную энергию на разрушение водородных связей.

Сильные водородные связи между молекулами воды препятствуют ее плавлению и испарению.

Водородные связи являются причиной и другого уникального свойства воды - при плавлении ее плотность возрастает. В структуре льда каждый атом кислорода связан через атомы водорода с четырьмя другими атомами кислорода - из других молекул воды. В результате образуется очень рыхлая "ажурная" структура. Вот почему лед такой легкий.

При замерзании вода расширяется и занимает больший объем. Плотность льда (0,92 г/мл) - меньше, чем плотность жидкой воды. Поэтому лед плавает на поверхности воды. Если бы у льда была более высокая плотность, по мере замерзания он опускался бы на дно, что сделало бы жизнь в водоемах зимой невозможной.

Внутримолекулярная ВС характерна для многих органических веществ. Это связь, объединяющая части одной и той же молекулы, например, белков. Наиболее важный пример, где присутствует внутримолекулярная ВС – молекула ДНК – нити двойной спирали связаны между собой водородной внутримолекулярной связью.

13. Окислительно-восстановительные реакции: определение ОВР, типы ОВР. Характеристика окислителей и восстановителей. Метод электронного баланса. Метод ионно-электронного баланса. Биологическое значение ОВР.

Все химические реакции можно разделить на два типа.

1 -   реакции, протекающие без изменения степени окисления атомов, входящих в состав 

реагирующих веществ.

2 - ОВР реакции, т.е, реакции, идущие с изменением степени окисления атомов в молекуле.

(про степень окисления – вопрос 9)

Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Сущности процессов окисления и восстановления:

1. Окислением называется процесс отдачи электронов атомом, молекулой или ионом.

Например:

Al – 3e- = Al3+       Fe2+ - e- = Fe3+

H2 – 2e- = 2H+       2Cl- - 2e- = Cl2

При окислении степень окисления повышается.

2. Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом.

Например:

S + 2е- = S2-  Сl2 + 2е- = 2Сl-  Fe3+ + e- = Fe2+

При восстановлении степень окисления понижается.

3. Атомы, молекулы или ионы, отдающие электроны называются восстановителями. Во время реакции они окисляются. Ато­мы, молекулы или ионы, присоединяющие электроны, называются окислителями. Во время реакции они восстанавливаются. Так как атомы, молекулы и ионы входят в состав определенных ве­ществ, то и эти вещества соответственно называются восстановителями или окислителями.

4. Окисление всегда сопровождается восстановлением, и наоборот, восстановление всегда связано с окислением, что можно выразить уравнениями:

Восстановитель – е- Окислитель

Окислитель + е- Восстановитель

Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов - окисления и восстановле­ния.

Число электронов, отдаваемых восстановителем,  равно числу электронов, присоединяемых окислителем.

При этом, независимо от того, переходят ли электроны с одного атома на другой полностью или же лишь частично оттягиваются к одному из атомов, условно говорят только об отдаче и присоединении электронов.

Зная СО соединений, м предсказать – окислительные или восстановительные свойства оно проявит: сера:

+1 -2 +1 +4 -2 +1 +6 -2

Н2S H2SO3 H2SO4 - в 1-м – это ее низшая СО=> в химических реакциях будет восстановителем. 2 – средняя СО, в зависимости от среды и партнера может выступать как в роли окислителя, так и восстановителя. 3 – более S не может повысить свою СО, => будет окислителем в этом соединении.

Типы ОВР:

1 – Межмолекулярные ОВР- такие ОВР, в которых меняют СО атомы, находящиеся в разных веществах: 0 +2 -2 +4 -2 0

C +CuO  CO2+Cu

2 – Внутримолекулярные ОВР - в которых меняют СО атомы разных элементов, находящиеся в одном веществе: +1 +5 -2 +1 -1 0

KClO3 KCl+O2

3 – Реакции диспропорционирования - такие ОВР, в которых атом одного и того же элемента дважды меняет СО: 0 +1 -2 +1 -1 +1 +1 -2

Cl2+H2O  HCl+HClO

Они возможны только в том случае, если вещество находится в промежуточной СО.

Среди простых веществ окислительные свойства характерны для типичных неметаллов (F2, Cl2, Br2, I2, O2, O3). Галогены, выступая в качестве окислителей, приобретают степень окисления –1, причем от фтора к иоду окислительные свойства ослабевают. Кислород, восстанавливаясь, приобретает степень окисления –2 (H2O или OH).

Сложные вещества, используемые в качестве окислителей, очень часто, содержат элементы в высшей степени окисления. Например:

   +7                              +6                          +5                             +7      

KMnO4           K2Cr2O7          HNO3              KClO4

            Среди кислородсодержащих кислот и их солей к наиболее важным окислителям относятся концентрированная серная кислота, азотная кислота и нитраты, перманганаты MnO4, хроматы  CrO42– и дихроматы Cr2O72–, кислородсодержащие кислоты галогенов (например, HClO) и их соли (например, KClO3).

            Хроматы  и дихроматы, выступая  в роли окислителей, в кислой среде восстанавливаются с образованием ионов Cr3+. Поскольку в кислой среде равновесие

2CrO42– + 2H+         Cr2O72– + H2O

смещено вправо, то окислителем служит ион Cr2O72–. Например:

K2Cr2O7 + Na2SO3  + 4H2SO4 = Cr2(SO4)3 +  K2SO4 +  Na2SO4 + 7H2O

            Концентрированная  серная кислота проявляет окислительные свойства за счет серы в высшей степени окисления +6. Продуктами восстановления серы могут быть: SO2 (степень окисления серы +4), сера – простое вещество (степень окисления серы 0), сероводород (степень окисления серы –2).

            Азотная кислота проявляет окислительные свойства за счет азота в высшей степени окисления +5, причем окислительная  способность HNO3 усиливается с ростом ее концентрации. Состав продуктов восстановления азотной кислоты зависит от активности восстановителя, концентрации кислоты и температуры системы; чем активнее восстановитель и ниже концентрация кислоты, тем глубже происходит восстановление азота.

            Кислородсодержащие  кислоты  галогенов  (например, HClO, HClO3, HBrO3) и их соли, действуя  в качестве  окислителей, обычно восстанавливаются  до степени окисления галогена –1 (в случае хлора и брома) и 0 (в случае иода).

            Водород в степени окисления +1 выступает  как окислитель преимущественно  в растворах кислот (как правило, при взаимодействии с металлами, расположенными  в ряду напряжений до водорода):

Zn + H2SO4 (разб.) = ZnSO4 + H2­

            При взаимодействии с сильными восстановителями в качестве окислителя может проявлять себя и водород, входящий в состав воды:

2H2O + 2Na = 2NaOH + H2­

H2O + NaH = NaOH + H2­

            Ионы  металлов,  находящихся в высшей степени окисления (например, Fe3+, Hg2+, Cu2+), выполняя  функцию окислителей, превращаются в ионы с более низкой степенью окисления:

2FeCl3 + H2S = 2FeCl2 + S + 2HCl

2HgCl2 + SnCl2 = Hg2Cl2 + SnCl4.

            Среди простых веществ к типичным восстановителям  принадлежат активные металлы (щелочные и щелочноземельные, алюминий, цинк, железо и др.), а также некоторые неметаллы, такие как  водород, углерод (в виде угля или кокса), фосфор, кремний. При этом в кислой среде металлы окисляются  до положительно заряженных ионов. В щелочной среде металлы, которые образуют амфотерные гидроксиды (например, цинк, алюминий, олово), входят в состав анионов гидроксокомплексов.  Углерод чаще всего окисляется до монооксида или диоксида; фосфор, при действии сильных окислителей, окисляется до ортофосфорной кислоты.

            В бескислородных кислотах (HCl, HBr, HI, H2S) и их солях носителями восстановительной функции  являются анионы, которые, окисляясь,  обычно образуют простые  вещества. В ряду галогенид-ионов восстановительные свойства усиливаются от Cl к I

            Гидриды щелочных и щелочноземельных металлов, содержащие ион H, проявляют восстановительные  свойства, легко окисляясь до свободного водорода:

CaH2 + 2H2O = Ca(OH)2 + 2H2­

            Металлы  в  промежуточной степени окисления  (ионы  Sn2+, Fe2+, Cu+, Hg22+ и др.), взаимодействуя с окислителями, способны  повышать  свою  степень окисления:

SnCl2 + Cl2 = SnCl4

10FeSO4 +2KMnO4 + 8H2SO4 =  2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O.

Окислительно-восстановительная двойственность XE "Окислительно-восстановительная двойственность"  – способность одного и  того  же  вещества, в  зависимости  от  реагентов  и  от  условий  проведения  реакции, выступать  как  в  роли   окислителя,  так  и  в  роли  восстановителя. В  таких  веществах содержится элемент в промежуточной  степени  окисления.

Окислительно-восстановительная двойственность характерна для простых веществ –  неметаллов. Например, фосфор по отношению к металлам выступает в роли окислителя:

          6e–   

   0                0                +2  –3                                                 0

3P  +   2Ca     =    Ca3P2                                (P – окислитель)

             В то же время фосфор выступает в роли восстановителя по отношению к фтору, кислороду или хлору. Например:

     20e– 

     0              0                +5 –2                                             0

4P  + 5O2     = 2P2O5                          (P – восстановитель)

             Другой пример. Азотная кислота за счет азота  в высшей степени окисления +5 может выступать только в роли окислителя. В аммиаке азот в низшей степени окисления –3, и, поэтому, за счет азота аммиак может выступать только в роли восстановителя. А в азотистой кислоте HNO2 азот находится в промежуточной степени окисления  +3. Азотистая кислота окисляется кислородом, и в этом случае азот – восстановитель:

                        +3             0            +5 –2                                  +3

            2HNO2 + O2 = 2HNO3                      (N – восстановитель)

            Но в реакции с сильным восстановителем, например, с иодоводородной кислотой, азотистая кислота – окислитель:

                  +3             -1     0             +2                          +3 

            2HNO2 + 2HI = I2 + 2NO­ + 2H2O           (N – окислитель).

Для составления уравнений реакций (подбора коэффициентов) используют 2 способа:

  1. Метод электронного баланса применяется при подборе коэф-ов в ОВР,

протекающих при сплавлении или термическом разложении веществ. При взаимодействии металла с практически безводными кислотами. В этом методе составляют электронные уравнения.

Пример: Составление уравнения реакции взаимодействия сероводорода с подкисленным  раствором перманганата калия.

Напишем схему реакции - формулы исходных и полученных веществ:

Н2S + КМnO4 + Н2SО4 → S + МnSО4 + К2SO4 + Н2О

Затем покажем изменение степеней окисления атомов до и после реакции:

Изменяются степени окисления у атомов серы и марганца (Н2S - восстанови­тель, КМnО4 - окислитель). Составляем электронные уравнения, т.е. изображаем процессы отдачи и присоединения электронов:

  

И наконец, находим коэффициенты при окислителе и восстановителе, а затем при других реагирующих веществах. Из электронных уравнений видно, что надо взять 5 моль Н2S и 2 моль КМnО4, тогда получим 5 моль атомов S и 2 моль МnSО4. Кроме того, из сопоставления атомов в левой и правой частях уравнения, найдем, что образуется также 1 моль К2SО4 и 8 моль воды. Окончательное уравнение реакции будет иметь вид

5Н2S + 2КМnО4 + ЗН2SО4 = 5S + 2МnSО4 + К2SО4 + 8Н2О

Правильность написания уравнения подтверждается подсчетом атомов одного элемента, например кислорода; в левой части их 2*4 + 3*4 = 20 и в правой части 2*4 + 4 + 8 = 20.

Переписываем уравнение в ионной форме:

5Н2S + 2MnO4- + 6H+ = 5S + 2Мn2+ + 8Н2О

Известно, что правильно написанное уравнение реакции является выражением закона сохранения массы веществ. Поэтому число одних и тех же атомов в исходных веществах и продуктах реакции должно быть одинаковым. Должны сохраняться и заряды. Сумма зарядов исходных веществ всегда должна быть равна сумме зарядов продуктов реакции.

  1. Метод ионно-электронного баланса (метод полуреакций) – используют при

нахождении коэф-в в ОВР, происходящих в водных растворах, причем это м.б. кислые или щелочные, или растворы, близкие к нейтральным. В этом методе составляют вспомогательные ионно-электронные уравнения. Следует различать методику уравнивания в кислой и щелочной среде. Атомы элементов, изменяющие свою СО, записывают в форме тех частиц, которые реально присутствуют в водных растворах.

1 – правило уравнивания в кислой среде

В ту часть полуреакции, где не хватает кислорода, ставим столько молекул воды, сколько не хватает О, а в другую часть полуреакции – соответствующее число протонов Н.

KMnO4+KNO2+H2SO4  т.к. H2SO4, => среда кислая (среду не берем, берем соли (KMnO4, KNO2 ), они диссоциируют)

K MnO4 K+ + MnO4− т.о. берем этот анион : справа + 4 молекулы воды, тогда слева 8 молекул Н

- + +2 0

MnO4 + 8H + 5e−  Mn + 4 H2O | 2

--------------- -------------------

+7 +2 значит, + 5e−

- 0 - +

NO2 + H2O - 2e−  NO3 + 2H здесь слева не хватает О, значит слева + 1молекула воды, тогда справа 2Н

--------------- -------------- | 5

-1 +1 значит, - 2e−

Складываем обе части уравнений с коэф-ми:

- + - 0 +2 0 - +

2MnO4 + 16H + 5NO2 + 5H2O  2Mn + 8 H2O + 5NO3 + 10H

Сокращаем подобные:

- + - +2 0 -

2MnO4 + 6H + 5NO2 +  2Mn + 3H2O + 5NO3

Теперь пишем молекулярную с этими кэф-ми, т.к. 6H – в кислоте, => H2SO4 с коф-м 3

2KMnO4 + 5KNO2 + 3H2SO4  2Mn SO4 + 3H2O + 5К NO3, (т.к. не хватает 2К и 1 SO4, то еще соль: ) + К2SO4

2 – правило уравнивания в щелочной среде

В ту часть полуреакции, где не хватает кислорода, ставим удвоенное произведение ОН группы, т.е. 2ОН, а в другую часть полуреакции – соответствующее число молекул Н2О. Пример:

NaNO3 + MnO2 + NaOH 

- -

NO3  NO2 справа добавляем 2ОН, тогда слева H2O

- 0 - -

NO3 + H2O + 2е−  NO2 + 2ОН

--------------- -------------- | 1

-1 -3 значит, + 2e−

0 - -2 0

MnO2 + 4ОН - 2е−  MnO4 + 2H2O

--------------- -------------- | 1

-4 -2 значит, - 2e−

Складываем обе части уравнений с коэф-ми (в этом случае коэф-т =1):

- 0 0 - - - -2 0

NO3 + H2O + MnO2 + 4ОН  NO2 + 2ОН + MnO4 + 2H2O

Сокращаем подобные:

- 0 - - -2 0

NO3 + MnO2 + 2ОН  NO2 + MnO4 + H2O

Теперь пишем молекулярную форму с этими кэф-ми

NaNO3 + MnO2 + 2NaOH  NaNO2 + Na2MnO4 + H2O

Биологическая роль ОВР. Многие процессы жизнедеятельности организма в основе своей являются ОВР – процессы окисления питательных веществ, дыхание, усвоение СО2 растениями и т.п. Перенос электронов с субстрата (восстановитель) на кислород (окислитель) непрерывно осуществляется в тканях и представляет собой цепь ОВР. ОВР распространены в природе и технике, к ним относятся процессы окисления металлов (ржавление), восстановление их из руд, в т.ч. электрохимическими способами. Связывание атмосферного азота, производство различных химических препаратов (лекарств, красителей и т.п.)