
- •1. Периодический закон и периодическая система химических элементов д.И.Менделеева.
- •2. Периодические изменения свойств химических элементов: радиус атома, энергия ионизации, энергия сродства к электрону, электроотрицательность, металлические и неметаллические свойства.
- •3. Развитие представления о строении атома: планетарная модель Резерфорда, теория Бора, квантовая теория строения атома.
- •4. Квантовые характеристики состояний электрона в атоме. Физический смысл квантовых чисел.
- •5. Электронное строение атомов и ионов. Правило Клечковского. Принцип Паули. Правило Хунда.
- •6. Характеристики химических связей: энергия, длина, полярность, валентный угол, насыщаемость, направленность, кратность.
- •7. Ковалентная связь (кс). Условия образования ковалентной связи, механизмы образования, свойства связи, критерий прочности.
- •8. Перекрывание атомных орбиталей как условие образования связи. Типы перекрывания (сигма, пи). Гибридизация атомных орбиталей. Кратные связи.
- •9. Валентность. Степень окисления.
- •10. Ионная связь. Условия образования ионной связи, механизм образования, свойства связи.
- •11. Металлическая связь. Условия образования металлической связи, механизм образования, свойства связи.
- •12. Водородная связь. Условия образования водородной связи, механизм образования, свойства связи.
- •14. Комплексные соединения. Координационная теория а.Вернера. Определение и строение кс. Номенклатура, классификация кс. Диссоциация кс. Константа нестойкости. Применение кс и их биологическая роль.
- •15. Растворы: определение, природа растворения. Растворимость веществ. Способы выражения концентрации растворов.
- •16. Электролитическая диссоциация. Теория эд с.Аррениуса. Степень эд. Сильные и слабые электролиты. Константа диссоциации.
- •17. Кислоты, основания и соли с точки зрения теории электролитической диссоциации.
- •18. Диссоциация воды. Водородный показатель.
- •19. Реакции в растворах электролитов. Гидролиз солей.
- •20. Электролиз расплавов и растворов.
- •21. Химическая кинетика. Скорость Химической реакции. Факторы, влияющие на скорость химической реакции. Закон действующих масс. Правило Вант-Гоффа.
- •22. Химическое равновесие. Константа химического равновесия. Смещение химического равновесия (принцип Ле Шателье)
- •23. Энергетика химических процессов: основные понятия термодинамики. Первое начало тд и его следствия. Энтальпия. Закон Гесса и его следствия.
- •24. Второе и третье начала тд. Энтропия. Энергии Гиббса и Гельмгольца.
- •25. Коллоидные растворы. Устойчивость и коагуляция дисперсных систем.
- •26. Дисперсные системы. Состояние вещества на границе раздела фаз.
- •27. Сорбция и сорбционные процессы.
3. Развитие представления о строении атома: планетарная модель Резерфорда, теория Бора, квантовая теория строения атома.
Суть планетарной модели строения атома (Э.Резерфорд, 1911 г.) можно свести к следующим утверждениям:
1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).
3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.
Эта модель оказалась очень наглядной и полезной для объяснения многих экспериментальных данных, но она сразу обнаружила и свои недостатки. В частности, электрон, двигаясь вокруг ядра с ускорением (на него действует центростремительная сила), должен был бы, согласно электромагнитной теории, непрерывно излучать энергию. Это привело бы к тому, что электрон должен был бы двигаться вокруг ядра по спирали и в конце концов упасть на него. Никаких доказательств того, что атомы непрерывно исчезают, не было, отсюда следовало, что модель Резерфорда в чем-то ошибочна.
Теория Бора. В 1913 г. датский физик Н.Бор предложил свою теорию строения атома. Как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Однако к этому времени уже доказали дискретность энергии электрона в атоме и это позволило Бору положить в основу новой теории два необычных предположения (постулата):
1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.
2. При движении по стационарным орбитам электрон не излучает и не поглощает энергии.
Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния в другое, что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия.
Бор рассчитал частоты линий спектра атома водорода, которые очень хорошо согласовывались с экспериментальными значениями, но было обнаружено также и то, что для других атомов эта теория не давала удовлетворительных результатов.
Квантовая модель строения атома. В последующие годы некоторые положения теории Бора были переосмыслены и дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятию об электроне только как частице. Теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом.
Свойства элементарных частиц, образующих атом
Частица |
Заряд |
Масса |
||
Кл |
условн. ед. |
г |
а.е.м. |
|
Электрон |
-1,6∙10-19 |
-1 |
9,10∙10-28 |
0,00055 |
Протон |
1,6∙10-19 |
+1 |
1,67∙10-24 |
1,00728 |
Нейтрон |
0 |
0 |
1,67∙10-24 |
1,00866 |
В основе современной теории строения атома лежат следующие основные положения:
1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна, подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся электрон проявляет волновые свойства, например, характеризуется способностью к дифракции. Длина волны электрона λ и его скорость v связаны соотношением де Бройля:
λ = h / mv, где m — масса электрона.
2. Для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение
∆x∙m∙∆v > ћ/2, где ∆х — неопределенность положения координаты, ∆v — погрешность измерения скорости.
3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части около ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.
4. Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.
Различные виды атомов имеют общее название — нуклиды. Нуклиды достаточно характеризовать любыми двумя числами из трех фундаментальных параметров: А — массовое число, Z — заряд ядра, равный числу протонов, равный порядковому номеру в таблице, равный числу электронов и N — число нейтронов в ядре. Эти параметры связаны между собой соотношениями: Z = А - N, N = А - Z, А= Z + N.
Нуклиды с одинаковым Z, но различными А и N, называют изотопами.
Сформулированные выше положения составляют суть новой теории, описывающей движение микрочастиц, — квантовой механики