
- •Введение
- •1. Физическая природа свойств твёрдых тел
- •1.1. Основные материалы микроэлектроники
- •2. Фазовые диаграммы и твердые растворы
- •2.1. Типы фазовых диаграмм
- •2.2. Системы, имеющие важное значение в микроэлектронике
- •2.3. Твердая растворимость
- •2.4. Задачи
- •2.5. Фазовые переходы
- •2.6. Термодинамические диаграммы
- •2.6.1. Диаграмма состояния (диаграмма равновесия, фазовая диаграмма)
- •2.6.2. Растворимость
- •2.6.3. Международная система единиц си (метр, килограмм, секунда, градус, Кельвин, моль)
- •2.6.4. Метод построения диаграмм состояния
- •2.6.5. Системы с ограниченной взаимной растворимостью компонентов в твердом состоянии
- •3. Структура твердотельных интегральных микросхем
- •3.1. Введение
- •3.1.1. Основные понятия и определения
- •3.2. Технология полупроводниковых интегральных микросхем
- •3.2.1. Общая характеристика технологического процесса
- •4. Диффузионные процессы в твердых телах
- •4.1. Введение
- •4.2. Законы диффузии
- •4.3. Основы кинетической теории газов
- •4.4. Диффузия как двухстадийный процесс
- •4.5. Диффузия в гетерогенном твердом теле
- •4.6. Техника проведения процессов диффузии
- •4.6.1. Диффузия из газовой фазы
- •4.6.2. Диффузия из жидкой фазы
- •4.6.3. Диффузия из твердой фазы
- •4.7. Способы проведения диффузии
- •5. Основы ионного легирования
- •5.1. Понятие о технологии ионного легирования
- •5.2. Оборудование для ионного легирования
- •5.3. Длина пробега ионов
- •5.4. Монокристалл
- •5.6. Синтез веществ с помощью ионного легирования
- •5.7. Отжиг легированных слоев
- •6. Технологические основы микроэлектроники
- •6.1. Введение
- •6.2. Подготовительные операции
- •6.3. Эпитаксия
- •6.4. Термическое окисление
- •6.5. Легирование
- •6.5.1. Способы диффузии
- •6.5.2. Теоретические основы диффузии
- •6.5.3. Ионная имплантация
- •6.6. Травление
- •6.7. Техника масок
- •6.7.1. Фотолитография
- •6.7.2. Фотошаблоны
- •8.7.3. Новые решения и тенденции
- •6.8. Нанесение тонких пленок
- •6.8.1. Термическое (вакуумное) напыление
- •6.8.2. Катодное напыление
- •6.8.3. Ионно–плазменное напыление
- •6.8.4. Анодирование
- •6.8.5. Электрохимическое осаждение
- •6.9. Металлизация
- •6.10. Сборочные операции
- •6.11. Технология тонкопленочных гибридных ис
- •6.11.1. Изготовление пассивных элементов
- •6.11.2. Монтаж навесных компонентов
- •6.12. Технология толстопленочных гибридных ис
- •Литература
6.11. Технология тонкопленочных гибридных ис
Согласно определению, приведенному в 1.2, гибридные ИС представляют собой совокупность пленочных пассивных элементов и навесных активных компонентов. Поэтому технологию тонкопленочных ГИС можно разбить на технологию тонкопленочных пассивных элементов и технологию монтажа активных компонентов.
6.11.1. Изготовление пассивных элементов
Тонкопленочные элементы ГИС осуществляются с помощью технологических методов, описанных в 6.8, т. е. путем локального (через маски) термического, катодного или ионно–плазменного напыления того или иного материала на диэлектрическую подложку.
В качестве масок длительное время использовались накладные металлические трафареты. Такие трафареты представляли собой тонкую биметаллическую фольгу с отверстиями – окнами. Основу трафарета составлял слой бериллиевой бронзы толщиной 100–150 мкм, к которому прилегал слой электрохимически нанесенного никеля толщиной 10–20 мкм, Последний определял размеры окон, т. е. рисунок трафарета, а слой бериллиевой бронзы выполнял роль несущей конструкции.
Серьезные недостатки металлических накладных трафаретов заключаются в том, что, во-первых, в процессе напыления пленок происходит напыление на сами трафареты, что меняет их толщину и постепенно приводит их негодность. Во-вторых, металлические трафареты мало пригодны при катодном и ионно-плазменном напылении, так как металл искажает электрическое поле и, следовательно, влияет на скорость напыления. Поэтому в последние годы от металлических накладных трафаретов практически отказались и используют для получения необходимого рисунка фотолитографию – метод заимствован из технологии полупроводниковых ИС.
Фотолитографию осуществляют следующим образом. На подложку наносят сплошные пленки необходимых материалов, например, резистивньй слой и поверх него – проводящий слой. Затем поверхность покрывают фоторезистом с помощью соответствующего фотошаблона создают в нем рисунок для проводящего слоя (например, для контактных площадок будущего резистора, 6.23, а). Через окна в фоторезистной маске проходит травление проводящего слоя, после чего фоторезист удаляют. В результате пока еще сплошной поверхности резистивного слоя получаются готовые контактные площадки (рис. 6.23, б). Снова наносят фоторезист и с помощью другого фотошаблона создают рисунок полоски резистора (рис. 6.23, в). Затем проводят травление, удаляют фоторезист и получают готовую конфигурацию резистора с контактными площадкам (рис. 6.23, г).
Конечно, важно, чтобы травитель, действующий на проводящий слой, не действовал на резистивный и наоборот. Имеется и еще ряд ограничений, которых мы не будем касаться. Заметим лишь, что с помощью фотолитографии не удается получать многослойные структуры типа конденсаторов. Однако это ограничение не очень существенно, так как в последнее время предпочитают использовать в ГИС навесные конденсаторы (ради экономии площади).
Для резистивных пленок
чаще всего используют хром, нихром (
)
и кермет из смеси хрома и моноокиси
кремния (1:1). Метод напыления для этих
материалов –
термический (вакуумный) Омические
контакты к резистивным пленкам (полоскам)
осуществляются так, как показано на
рис. 6.23.
Для обкладок конденсаторов
используют алюминий, причем до напыления
нижней обкладки (прилегающей к подложке)
приходится предварительно напылять
тонкий подслой
из сплава
,
так как адгезия алюминия непосредственно
с подложкой оказывается недостаточной.
Для диэлектрических
слоев пленочных конденсаторов по
совокупности требований (большая
диэлектрическая проницаемость ξ, малый
тангенс угла потерь
,
большая пробивная напряженность и др.)
наибольшее распространение имеют
моноокись кремния
и моноокись германия
.
Особое место среди диэлектриков занимают
окислы
и
,
которые получают не методом напыления,
а методом анодирования нижних металлических
обкладок (
или
).
Для проводниковых
пленок и омических контактов используют,
как правило, либо золото с подслоем
,
либо медь с подслоем ванадия (назначение
подслоев –
улучшить адгезию с подложкой). Толщина
проводящих пленок и контактных площадок
обычно составляет 0,5–1
мкм. Размеры контактных площадок от
мкм и более.
Рис. 6.23. Получение тонкопленочных резисторов методом фотолитографии:
а – фоторезистная маска (3) под рисунок проводящего слоя (2);
б – готовый рисунок проводящего слоя (2);
в – фоторезистная маска (3) под рисунок резистивного слоя (1);
г – готовый резистор с проводящими выводами
Толщина наносимых пленок контролируется в процессе напыления. Для этого используется несколько методов. Один из них, пригодный только в случае резистивных пленок, состоит в использовании так называемого свидетеля. Свидетель представляет собой вспомогательный (не входящий в структуру ГИС) слой, напыляемый одновременно с рабочими слоями, но расположенный на периферии подложки и снабженный двумя заранее предусмотренными внешними выводами. Через эти выводы осуществляется контроль сопротивления свидетеля в процессе напыления. Геометрия свидетеля известна. Поэтому, когда его сопротивление достигает значения, соответствующего необходимой толщине, напыление прекращают (перекрывают заслонку). Толщина рабочих слоев будет такой же, как у свидетеля, так как они напылялись в одинаковых условиях.
Другой способ контроля состоит в использовании в качестве свидетеля тонкой кварцевой пластины, которая через внешние выводы присоединена к колебательному контуру генератора колебаний. Как известно, кварцевая пластина обладает свойствами колебательного контура, причем резонансная частота однозначно связана с толщиной пластины. В процессе напыления толщина пластины меняется и меняется частота генератора. Изменения частоты легко измерить и остановить процесс напыления в нужный момент.
Подложки тонкопленочных
ГИС должны прежде всего обладать хорошими
изолирующими свойствами. Кроме того,
желательны малая диэлектрическая
проницаемость, высокая теплопроводность,
достаточная механическая прочность.
Температурный коэффициент расширения
должен быть близким к температурным
коэффициентам расширения используемых
пленок. Типичные параметры подложек
следующие:
.
В настоящее время наибольшее распространение в качестве подложек имеют ситалл и керамика; стекло утратило свое первоначальное значение. Ситалл представляет собой кристаллическую разновидность стекла (обычной стекло аморфно), а керамика – смесь окислов в стекловидной и кристаллической фазах (главные составляющие и ).
Толщина подложек составляет 0,5–1 мм в зависимости от площади. Площадь подложек у ГИС значительно больше площади кристаллов у полупроводниковых ИС. Стандартные размеры подложек лежат в пределах от 12*10 до 48*30 мм. Требования к гладкости поверхности примерно такие же, как и в случае кремния: допустимая шероховатость не превышает 25*50 нм (класс шероховатости 12–14).
Обычно ГИС, как и полупроводниковые ИС, изготавливаются групповым методом на ситалловых или иных пластинах большой площади. По завершении основных технологических операций, связанных с получением пленочных пассивных элементов и металлической разводки, пластина разделяется на отдельные подложки. Это обычно осуществляют методом скрайбирования, как и в случае полупроводниковых ИС. После разделения подложек каждая из них снабжается навесными компонентами и заключается в корпус.