
- •Введение
- •1. Физическая природа свойств твёрдых тел
- •1.1. Основные материалы микроэлектроники
- •2. Фазовые диаграммы и твердые растворы
- •2.1. Типы фазовых диаграмм
- •2.2. Системы, имеющие важное значение в микроэлектронике
- •2.3. Твердая растворимость
- •2.4. Задачи
- •2.5. Фазовые переходы
- •2.6. Термодинамические диаграммы
- •2.6.1. Диаграмма состояния (диаграмма равновесия, фазовая диаграмма)
- •2.6.2. Растворимость
- •2.6.3. Международная система единиц си (метр, килограмм, секунда, градус, Кельвин, моль)
- •2.6.4. Метод построения диаграмм состояния
- •2.6.5. Системы с ограниченной взаимной растворимостью компонентов в твердом состоянии
- •3. Структура твердотельных интегральных микросхем
- •3.1. Введение
- •3.1.1. Основные понятия и определения
- •3.2. Технология полупроводниковых интегральных микросхем
- •3.2.1. Общая характеристика технологического процесса
- •4. Диффузионные процессы в твердых телах
- •4.1. Введение
- •4.2. Законы диффузии
- •4.3. Основы кинетической теории газов
- •4.4. Диффузия как двухстадийный процесс
- •4.5. Диффузия в гетерогенном твердом теле
- •4.6. Техника проведения процессов диффузии
- •4.6.1. Диффузия из газовой фазы
- •4.6.2. Диффузия из жидкой фазы
- •4.6.3. Диффузия из твердой фазы
- •4.7. Способы проведения диффузии
- •5. Основы ионного легирования
- •5.1. Понятие о технологии ионного легирования
- •5.2. Оборудование для ионного легирования
- •5.3. Длина пробега ионов
- •5.4. Монокристалл
- •5.6. Синтез веществ с помощью ионного легирования
- •5.7. Отжиг легированных слоев
- •6. Технологические основы микроэлектроники
- •6.1. Введение
- •6.2. Подготовительные операции
- •6.3. Эпитаксия
- •6.4. Термическое окисление
- •6.5. Легирование
- •6.5.1. Способы диффузии
- •6.5.2. Теоретические основы диффузии
- •6.5.3. Ионная имплантация
- •6.6. Травление
- •6.7. Техника масок
- •6.7.1. Фотолитография
- •6.7.2. Фотошаблоны
- •8.7.3. Новые решения и тенденции
- •6.8. Нанесение тонких пленок
- •6.8.1. Термическое (вакуумное) напыление
- •6.8.2. Катодное напыление
- •6.8.3. Ионно–плазменное напыление
- •6.8.4. Анодирование
- •6.8.5. Электрохимическое осаждение
- •6.9. Металлизация
- •6.10. Сборочные операции
- •6.11. Технология тонкопленочных гибридных ис
- •6.11.1. Изготовление пассивных элементов
- •6.11.2. Монтаж навесных компонентов
- •6.12. Технология толстопленочных гибридных ис
- •Литература
6.8.2. Катодное напыление
Схема этого метода показана на рис. 6.16. Здесь большинство компонентов те же, что и на рис. 6.15. Однако отсутствует испаритель; его место по расположению (и по функции) занимает катод 6, который либо состоит из напыляемого вещества, либо электрически контактирует с ним. Роль анода выполняет подложка вместе с держателем.
Подколпачное
пространство сначала откачивают до
-
мм рт. ст., а затем в него через штуцер
8
вводят некоторое количество очищенного
нейтрального газа (чаще всего аргона),
так что создается давление
мм рт. ст. При подаче высокого (2–3
кВ) напряжения на катод (анод заземлен
из соображений электробезопасности)
в пространстве анод-катод возникает
аномальный тлеющий разряд, сопровождающийся
образованием квазинейтральной
электронно–ионной
плазмы.
Рис. 6.16. Схема установки катодного напыления
Специфика аномального тлеющего разряда состоит в том, что в прикатодном пространстве образуется настолько сильное электрическое поле, что положительные ионы газа, ускоряемые этим полем и бомбардирующие катод, выбивают из него не только электроны (необходимые для поддержания разряда), но и нейтральные атомы. Тем самым катод постепенно разрушается. В обычных газоразрядных приборах разрушение катода недопустимо (поэтому в них используется тлеющий разряд), но в данном случае выбивание атомов из катода является полезным процессом, аналогичным испарению.
Важным преимуществом катодного напыления по сравнению с термическим является то, что распыление катода не связано с высокой температурой. Соответственно отпадают трудности при напылении тугоплавких материалов и химических соединений (см. последний абзац предыдущего раздела).
Однако в данном методе катод (т. е. напыляемый материал), будучи элементом газоразрядной цепи, должен обладать высокой электропроводностью. Такое требование ограничивает ассортимент напыляемых материалов. В частности, оказывается невозможным напыление диэлектриков, в том числе многих окислов и других химических соединений, распространенных в технологии полупроводниковых приборов.
Это ограничение в значительной мере устраняется при использовании так называемого реактивного (или химического) катодного напыления, особенность которого состоит в добавлении к основной массе инертного газа небольшого количества активных газов, способных образовывать необходимые химические соединения с распыляемым материалом катода. Например, примешивая к аргону кислород, можно вырастить на подложке пленку окисла. Примешивая азот или моноокись углерода, можно получить нитриды или карбиды соответствующих металлов. В зависимости от парциального давления активного газа химическая реакция может происходить либо на катоде (и тогда на подложке осаждается уже готовое соединение), либо на подложке–аноде.
Недостатками катодного напыления в целом являются некоторая загрязненность пленок (из-за использования сравнительно низкого вакуума), меньшая по сравнению с термическим методом скорость напыления (по той же причине), а также сложность контроля процессов.