
- •Ответы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
- •Производная функции одной переменной, её геометрический и физический смысл.
- •Непрерывность функции одной переменной, имеющей конечную производную.
- •Уравнение касательной и нормали к графику.
- •Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
- •Производная сложной функции.
- •Производная обратной функции.
- •Производные функций, заданных неявно и параметрически.
- •Дифференцируемость и дифференциал функции. Геометрический смысл дифференциала.
- •Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши.
- •Правило Лопиталя.
- •Тема 2. Исследование функций с помощью производных.
- •Условие возрастания и убывания функций. Признак монотонности функции.
- •Исследование функции на выпуклость и вогнутость. Точки перегиба функции. Теорема о существовании выпуклости, вогнутости.
- •Теоремы о необходимом и достаточном условии существования точек перегиба.
- •Асимптоты кривой.
- •Тема 3. Дифференцирование функций нескольких переменных.
- •Частные производные и полный дифференциал функции двух переменных.
- •Частные производные и дифференциалы высших порядков функции двух переменных.
- •Дифференцирование сложной функции.
- •Дифференцирование неявной функции.
- •Касательная плоскость и нормаль к поверхности.
- •Производная по направлению.
- •Градиент функции.
- •Понятие экстремума функции двух переменных.
- •Необходимое условие экстремума функции двух переменных.
- •Достаточное условие экстремума функции двух переменных.
- •Наибольшее и наименьшее значения функции в замкнутой области.
- •Интегрирование рациональных дробей.
- •Интегрирование иррациональных функций.
- •Дифференциальный бином.
- •Интегрирование тригонометрических функций.
- •Тема 5. Определённый интеграл.
- •Задачи, приводящие к понятию определённого интеграла. Определённый интеграл как предел интегральных сумм.
- •Вычисление объёмов тел вращения.
- •Вычисление длин дуг плоских кривых.
- •Тема 6. Несобственные интегралы.
- •Несобственные интегралы с бесконечными пределами. Признаки сходимости.
- •Несобственные интегралы от неограниченных функций. Признаки сходимости.
- •Тема 7. Двойные и тройные интегралы.
- •Двойные интегралы. Изменение порядка интегрирования.
- •Вычисление двойных интегралов.
- •Тройные интегралы и их вычисление.
- •Замена переменных в двойных и тройных интегралах.
- •Криволинейные интегралы.
Ответы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
Производная функции одной переменной, её геометрический и физический смысл.
Рассмотрим функцию f(x), область определения которой содержит некоторый открытый интервал вокруг точки x0. Тогда функция f(x) является дифференцируемой в точке x0, и ее производная определяется формулой
Геометрический смысл производной: производная f'(x0) есть угловой коэффициент касательной, проведенной к кривой y = f(x) в точке x0, который в свою очередь равен tg угла наклона касательной к графику функции.
Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.
Непрерывность функции одной переменной, имеющей конечную производную.
Теорема.
Если функция
дифференцируема
в некоторой точке a,
то она непрерывна в этой точке.
Доказательство.
По определению производной
Это предельное равенство означает, что выражение под знаком предела можно представить в виде
где α(x) – бесконечно малая функция при x → a. Тогда
Следовательно,
при x → a.
Уравнение касательной и нормали к графику.
Рассмотрим кривую, уравнение которой есть y=f(x). Возьмем на этой кривой точку M(x0, y0), и составим уравнение касательной к данной кривой в точке M, предполагая, что эта касательная не параллельна оси Oy.
Уравнение прямой с угловым коэффициентом в общем виде есть у=kx + b. Поскольку для касательной k= f'(x0), то получаем уравнение y= f'(x0)·x + b. Параметр b найдем из условия, что касательная проходит через точку M(x0, y0). Поэтому ее координаты должны удовлетворять уравнению касательной: y0= f'(x0)·x0 + b. Отсюда b=y0– f'(x0)·x0.
Таким образом, получаем уравнение касательной y= f'(x0)·x +y0 – f'(x0)·x0 или y = f '(x0)·(x – x0) + f(x0)
Нормалью к кривой в данной точке называется прямая, проходящая через эту точку перпендикулярно к касательной в данной точке.
Из определения нормали следует, что ее угловой коэффициент kn связан с угловым коэффициентом касательной k равенством:
Учитывая, что нормаль также как и касательная проходит через точку M(x0, y0), то уравнение нормали к кривой y= f(x) в данной точке M имеет вид:
.
Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
Если
функции u=u(x) и v=v(x) имеют в
точке x производные, то сумма
(разность), произведение и частное этих
функций также имеют производные в этой
точке, и справедливы следующие формулы:
Производная сложной функции.
Сложная функция – это функция, аргументом которой также является функция.
Сложная функция записывается в виде
где u =
g(x) - внутренняя функция, являющаяся,
в свою очередь, аргументом для внешней
функции f.
Если f и g -
дифференцируемые функции, то сложная
функция
также
дифференцируема по x и ее производная
равна
Формула
нахождения производной сложной функции.
Данная формула показывает, что производная сложной функции равна произведению производной внешней функции на производную от внутренней функции. Важно, однако, что производная внутренней функции вычисляется в точке x, а производная внешней функции - в точке u = g(x).
Производная обратной функции.
Пусть функции y
= f(x) и x = g(y) взаимно обратные,
определенные на интервалах
и
соответственно.
Если в точке
существует
конечная отличная от нуля производная
функции f(x), то в точке
существует
конечная производная обратной
функции g(y), причем
.