
- •Общий курс физики физические основы электромагнитных явлений
- •Предисловие
- •Глава 1. Электрическое поле
- •1.1. Исходные положения. Основные понятия и определения
- •1.2. Основной закон электростатики
- •1.3. Электростатическое поле. Напряженность поля
- •1.4. Циркуляция вектора напряженности электростатического поля. Потенциал поля
- •1.5. Связь между силовой и энергетической характеристиками электростатического поля
- •1.6. Теорема Гаусса для электростатического поля в вакууме
- •1.7. Диэлектрики в электростатическом поле. Теорема Гаусса для электростатического поля в диэлектрике
- •1.8. Проводники в электростатическом поле. Конденсаторы
- •1.9. Энергия электростатического поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 2. Постоянный электрический ток
- •2.1. Электрический ток и его характеристики
- •2.2. Закон Ома в дифференциальной форме
- •2.3. Последовательное и параллельное соединение проводников. Электроизмерительные приборы
- •2.4. Работа и мощность тока. Закон Джоуля-Ленца
- •2.5. Закон Ома в интегральной форме
- •2.6. Расчет разветвленных цепей постоянного тока
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 3. Магнитное поле
- •3.1. Магнитное поле и его характеристики
- •3.2. Закон Био-Савара-Лапласа
- •3.3. Магнитное поле движущегося заряда. Сила Лоренца
- •3.4. Проводник с током в магнитном поле. Закон Ампера
- •3.5. Циркуляция вектора индукции магнитного поля в вакууме
- •3.6. Теорема Гаусса для магнитного поля в вакууме
- •3.7. Магнитные свойства вещества
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 4. Электромагнитная индукция
- •4.1. Закон электромагнитной индукции
- •4.2. Явление самоиндукции. Индуктивность контура
- •4.3. Взаимная индукция
- •4.4. Энергия магнитного поля
- •4.5. Практическое применение электромагнитной индукции
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 5. Элементы теории электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2. Ток смещения
- •5.3. Уравнения Максвелла для электромагнитного поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Некоторые знаменательные события в истории развития электродинамики
- •Элементы векторной алгебры
- •Библиографический список
- •Оглавление
- •Глава 1. Электрическое поле . . . . . . . . . . . . . . . . . . . . . . . . . 4
- •Глава 2. Постоянный электрический ток . . . . . . . . . . . 43
- •Глава 3. Магнитное поле . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
- •Глава 4. Электромагнитная индукция . . . . . . . . . . . . . . . 91
- •Глава 5. Элементы теории электромагнитного
- •Ан Александр Федорович
Краткие выводы
Электрический ток – это упорядоченное движение электрически заряженных частиц. Количественными характеристиками тока являются сила тока
и плотность тока
Ток, сила и направление которого не изменяются с течением времени, называется постоянным.
Для возникновения и поддержания электрического тока необходимо: а) наличие свободных электрических зарядов; б) наличие электрического поля; в) присутствие в цепи устройств (источников тока), способных поддерживать разность потенциалов за счет работы сторонних сил.
ЭДС – физическая скалярная величина, определяемая работой сторонних сил при перемещении единичного положительного заряда:
Напряжение на участке цепи – физическая скалярная величина, определяемая работой суммарного поля кулоновских и сторонних сил при перемещении единичного положительного заряда на данном участке:
Напряжение на концах
участка цепи равно разности потенциалов,
если участок не содержит источника тока
(
),
т.е. является однородным.
Электрическое сопротивление линейных металлических проводников зависит от материала, длины и площади поперечного сечения:
С увеличением температуры сопротивление таких проводников увеличивается:
Проводники в электрической цепи могут соединяться последовательно и параллельно:
-
Соединение
Последовательное
Параллельное
Постоянный параметр цепи
Суммируемая величина
Общее сопротивление цепи
Общее сопротивление цепи из n одинаковых проводников
Закон Ома для однородного участка цепи
Закон Ома в дифференциальной форме связывает плотность тока в любой точке проводника с напряженностью электрического поля в той же точке:
Участок цепи, содержащий источник тока, называется неоднородным. Закон Ома для неоднородного участка цепи (закон Ома в интегральной форме)
В зависимости от конфигурации участка цепи или режима из этого закона получаем:
-
1
Источник тока отсутствует:
Закон Ома для неоднородного участка цепи
2
Цепь замкнута:
Закон Ома для замкнутой цепи
3
Режим холостого хода цепи:
ЭДС источника в разомкнутой цепи равна разности потенциалов на его зажимах
Количество теплоты, которое выделяется в проводнике при протекании электрического тока, определяется законом Джоуля-Ленца:
Закон Джоуля-Ленца в дифференциальной форме связывает удельную тепловую мощность тока с напряженностью электрического тока:
Мощность электрического тока – физическая величина, определяемой работой, совершенной током за единицу времени:
Одним из методов расчета разветвленных электрических цепей является расчет с использованием правил Кирхгофа.
Первое правило Кирхгофа: алгебраическая сумма сил токов в узле электрической цепи равна нулю, т.е.
Второе правило Кирхгофа: в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС источников равна алгебраической сумме падений напряжений на отдельных участка этого контура, т.е.