
- •Общий курс физики физические основы электромагнитных явлений
- •Предисловие
- •Глава 1. Электрическое поле
- •1.1. Исходные положения. Основные понятия и определения
- •1.2. Основной закон электростатики
- •1.3. Электростатическое поле. Напряженность поля
- •1.4. Циркуляция вектора напряженности электростатического поля. Потенциал поля
- •1.5. Связь между силовой и энергетической характеристиками электростатического поля
- •1.6. Теорема Гаусса для электростатического поля в вакууме
- •1.7. Диэлектрики в электростатическом поле. Теорема Гаусса для электростатического поля в диэлектрике
- •1.8. Проводники в электростатическом поле. Конденсаторы
- •1.9. Энергия электростатического поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 2. Постоянный электрический ток
- •2.1. Электрический ток и его характеристики
- •2.2. Закон Ома в дифференциальной форме
- •2.3. Последовательное и параллельное соединение проводников. Электроизмерительные приборы
- •2.4. Работа и мощность тока. Закон Джоуля-Ленца
- •2.5. Закон Ома в интегральной форме
- •2.6. Расчет разветвленных цепей постоянного тока
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 3. Магнитное поле
- •3.1. Магнитное поле и его характеристики
- •3.2. Закон Био-Савара-Лапласа
- •3.3. Магнитное поле движущегося заряда. Сила Лоренца
- •3.4. Проводник с током в магнитном поле. Закон Ампера
- •3.5. Циркуляция вектора индукции магнитного поля в вакууме
- •3.6. Теорема Гаусса для магнитного поля в вакууме
- •3.7. Магнитные свойства вещества
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 4. Электромагнитная индукция
- •4.1. Закон электромагнитной индукции
- •4.2. Явление самоиндукции. Индуктивность контура
- •4.3. Взаимная индукция
- •4.4. Энергия магнитного поля
- •4.5. Практическое применение электромагнитной индукции
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Глава 5. Элементы теории электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2. Ток смещения
- •5.3. Уравнения Максвелла для электромагнитного поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Некоторые знаменательные события в истории развития электродинамики
- •Элементы векторной алгебры
- •Библиографический список
- •Оглавление
- •Глава 1. Электрическое поле . . . . . . . . . . . . . . . . . . . . . . . . . 4
- •Глава 2. Постоянный электрический ток . . . . . . . . . . . 43
- •Глава 3. Магнитное поле . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
- •Глава 4. Электромагнитная индукция . . . . . . . . . . . . . . . 91
- •Глава 5. Элементы теории электромагнитного
- •Ан Александр Федорович
2.4. Работа и мощность тока. Закон Джоуля-Ленца
Рассмотрим однородный
проводник, по концам которого приложено
напряжение
.
За время dt через
поперечное сечение проводника переносится
заряд
.
Так как ток представляет собой перемещение
заряда dq под действием
электрического поля, работа тока есть
(2.14)
Используя закон Ома для однородного участка цепи, формулу (2.14) можно представить в виде
(2.15)
Мощность электрического тока – это быстрота совершения работы, т.е.
(2.16)
Единица мощности – ватт: 1 Вт – мощность, выделяемая в проводнике за 1 с при протекании тока силой 1 А.
Если ток протекает по неподвижному металлическому проводнику, то вся работа тока затрачивается на его нагревание и по закону сохранения энергии
Таким образом, с учетом (2.14) и (2.15) получим:
(2.17)
Количество теплоты, выделяющееся за конечный промежуток времени от 0 до t при прохождении постоянного тока силой I найдем, интегрируя выражение (2.17):
(2.18)
Таким образом, количество теплоты, которое выделяется в проводнике с током, пропорционально квадрату силы тока, времени его протекания и сопротивлению проводника. Выражение (2.18) есть закон Джоуля-Ленца для участка цепи постоянного тока. Он был установлен экспериментально Д. Джоулем (1841) и независимо от него Э.Х. Ленцем (1842).
Выделим в проводнике
элементарный цилиндрический объем
(ось цилиндра совпадает с направлением
тока). Сопротивление этого элементарного
объема
Тогда по закону Джоуля-Ленца за время
dt в этом объеме
выделится теплота:
Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью электрического тока:
Используя
дифференциальную форму закона Ома
(2.11) и соотношение
,
получим:
(2.19)
Формула (2.19) является обобщенным выражением закона Джоуля-Ленца в дифференциальной форме, пригодным для любого проводника.
2.5. Закон Ома в интегральной форме
Д
+
и на концах которого приложена разность
потенциалов
.
На рассматриваемом
участке работа
всех приложенных сил (сторонних и
электростатических), совершаемая над
носителями тока, согласно (2.6) равна:
В этой формуле ЭДС
берется либо с положительным, либо с
отрицательным знаком. Если ЭДС способствует
движению положительных зарядов в
направлении обхода (в направлении 1-2),
т.е. внутри источника обход совпадает
с перемещением зарядов от катода к
аноду, то
(рис. 2.8, а). Если ЭДС препятствует
движению положительных зарядов в
направлении обхода, то
(рис. 2.8, б).
По закону сохранения и превращения энергии работа равна теплоте, выделяющейся на участке 1-2 за время t (эта теплота определяется согласно закону Джоуля-Ленца):
(2.20)
Приравнивая (2.6) и (2.20), получим:
(2.21)
или
(2.22)
где R – суммарное сопротивление, включающее в себя внутреннее сопротивление r источника тока и сопротивление внешней цепи.
Выражение (2.21) или (2.22) есть закон Ома в интегральной (обобщенной) форме для цепи постоянного тока.
Действительно, если
на данном участке цепи источник тока
отсутствует (
),
то из (2.22) приходим к закону Ома для
однородного участка цепи:
Если электрическая
цепь замкнута (точки 1 и 2 совпадают),
то
.
Тогда из (2.22) получаем закон Ома для
замкнутой цепи:
Наконец, если цепь
разомкнута, то
и из (2.22) получаем, что
,
следовательно, для экспериментального
определения ЭДС источника тока необходимо
измерить разность потенциалов на его
зажимах при разомкнутой нагрузке (режим
холостого хода цепи).