Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТАТ_лекции_РосНОУ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
439.17 Кб
Скачать

Индекс себестоимости —

где z1 и z0 — себестоимость единицы продукции в отчетном и базисном периодах;

Индекс трудоемкости — ,

где t1 и t0затраты времени на производство единицы продукции в отчетном и базисном периодах.

Следовательно, индивидуальные индексы представляют собой, по существу, относительные величины динамики, выполнения плана или сравнения. Индекс, как относительный показатель, выражается в виде коэффициентов, когда база для сравнения принимается за единицу, и в процентах, когда база для сравнения принимается за 100. Если в результате вычислений полученный индекс больше 1 или 100%, то это указывает на рост явления, если же меньше 1 или 100% — на снижение уровня изучаемого явления. В приведенных выше примерах индекс производства минеральных удобрений равен 1,45; или 145%. Это значит, что производство минеральных удобрений составило в 2008 г. 1,45; или 145% по сравнению с 2000 г., т.е. возросло на 45%.

Базисные и цепные индексы. Для вычисления индексов, как и всякой другой относительной величины, необходимо иметь данные за два периода, или два сравниваемых уровня.

Если имеются данные за ряд периодов или уровней, в качестве базы для сравнения может быть принят один и тот же начальный уровень или уровень предыдущего периода. В первом случае мы получим индексы с постоянной базой — базисные, а во втором — индексы с переменной базой — цепные.

И базисные, и цепные индексы имеют определенное значение в экономическом анализе. Первые характеризуют изменение явлений за длительный период времени по отношению к какой-либо одной отправной точке. Если же возникает необходимость следить за текущими изменениями явлений, применяют цепные индексы. Вопрос о том, каким индексом пользоваться в каждом конкретном случае, решают исходя из задач исследования.

Если базисные и цепные индексы охватывают один и тот же период, между ними существует определенная взаимосвязь: произведение цепных индексов равно базисному.

Существующая взаимосвязь между базисными и цепными индексами дает возможность вычислять базисные индексы по данным о цепных, и наоборот.

В статистике часто приходится иметь дело с показателями, связанными между собой, как сомножители с произведением. Например, валовой сбор равен произведению урожайности и площади, фонд заработной платы — произведению средней заработной платы и численности работников, товарооборот — произведению цены и физического объема товарооборота и т.д. В такой же связи находятся и индексы этих показателей: индекс произведения равен произведению индексов сомножителей. Так,

где ipq — индекс товарооборота; ip — индекс цен; iq — индекс физического объема товарооборота.

Или

где yny — индекс валового сбора, iп — индекс посевных площадей,iy — индекс урожайности.

Такие индексы называются сопряженными. Их взаимосвязь дает возможность по двум имеющимся индексам находить третий.

Общий индекс обозначается буквой I и также сопровождается подстрочным знаком индексируемого показателя: например, Iр - общий индекс цен; Iz — общий индекс себестоимости.

Методика расчета общих индексов сложнее, чем индивидуальных, и различна в зависимости от характера индексируемых показателей, наличия исходных данных и целей исследования.

Любые общие индексы могут быть построены двумя способами: как агрегатные и как средние из индивидуальных.

Общие индексы показывают соотношение совокупности явлений, состоящей из разнородных, непосредственно несоизмеримых элементов. Например, несмотря на различия потребительских стоимостей отдельных продуктов, все они являются результатом труда и поэтому могут быть выражены общей мерой через стоимость, трудовые затраты и т.д. Так, для определения общей стоимости различных видов продукции в качестве соизмерителя используется обычно цена за единицу продукции, для определения общей себестоимости или производственных затрат — себестоимость единицы продукции, общих затрат труда — затраты труда на производство единицы продукции, и т.д. Рассмотрим построение общего индекса на примере вычисления индекса товарооборота (табл. 1).

Таблица.1