
- •Содержание модуля
- •1. Понятие статистики. Предмет статистической науки
- •2. Основные категории статистической науки
- •3. Методы статистической науки.
- •4. Система учета и статистика
- •5. Основные задачи статистического учета и статистики
- •6. Сущность статистического наблюдения; требования, предъявляемые к статистическому наблюдению.
- •7. Программно-методологическое обеспечение статистического наблюдения и организационные вопросы наблюдения
- •Организационные вопросы статистического наблюдения.
- •8. Виды статистического наблюдения
- •9. Способы статистического наблюдения. Основные организационные формы статистического наблюдения
- •Формы, виды и способы статистического наблюдения
- •10. Ошибки статистического наблюдения. Способы контроля материалов статистического наблюдения
- •11. Понятие сводки и группировки данных статистического наблюдения. Виды группировок
- •12. Принципы построения статистических группировок, вопросы техники выполнения группировок
- •13. Сущность и составляющие элементы статистической таблицы. Виды таблиц по характеру подлежащего; виды таблиц по разработке сказуемого
- •Распределение предприятий по уровню технической оснащенности и эффективности использования живого труда.
- •14. Основные правила построения таблиц и приёмы чтения таблиц
- •15. Графическое изображение статистических данных. Статистический график и его элементы
- •16. Графическое изображение статистических данных. Основные виды графиков
- •Способу построения,
- •Форме графических образов,
- •Характеру решаемых задач.
- •17. Показатели статистики, их сущность и назначение. Абсолютные статистические показатели, их основные виды, единицы измерения
- •18. Классификация статистических показателей
- •19. Относительные величины. Их значение и виды
- •20. Средние величины. Сущность средних величин, их виды
- •21. Характеристика структурных средних величин. Мода и медиана. Методология расчета в ранжированном дискретном ряду, интервальном ряду
- •22. Понятие вариации признака. Этапы статистического анализа вариации
- •1. Построение вариационного ряда.
- •2. Графическое изображение вариационного ряда.
- •23. Показатели вариации. Абсолютные и относительные показатели вариации
- •2) Линейный коэффициент вариации ;
- •3) Простой коэффициент вариации ;
- •24. Выборочное наблюдение. Понятие о выборочном наблюдении. Способы формирования выборочной совокупности. Виды выборки
- •25. Ошибки выборки. Определение необходимого объёма выборки. Оценка результатов выборочного наблюдения и распространение их на генеральную совокупность
- •26. Статистические ряды распределения
- •27. Понятие и классификация рядов динамики. Показатели анализа рядов динамики: интенсивности изменения ряда динамики; средние показатели ряда динамики
- •28. Экономические индексы. Сущность, классификация и выполняемые задачи
- •1. Индексы позволяют измерять изменение сложных явлений.
- •2. По степени охвата единиц совокупности индексы делятся на индивидуальные и общие (сводные).
- •29. Виды индексов и методы их расчета. Индивидуальные, групповые сводные индексы
- •Индекс себестоимости —
- •Индекс трудоемкости — ,
- •Количество и цены проданных магазинам продуктов
- •30. Экономические индексы. Методика построения агрегатных индексов
- •1. Общие базисные индексы цен с постоянными (базисными) весами (январскими):
- •3. Общие цепные индексы цен с постоянными весами (январскими):
- •4. Общие цепные индексы цен с переменными весами:
- •31. Статистическое изучение связи между явлениями
- •Количественные критерии оценки тесноты связи
- •Основные формулы статистики Статистическая группировка
- •Относительные показатели
- •Средние величины
- •Абсолютные показатели вариации
- •Используемая литература
- •Перечень вопросов к зачету
27. Понятие и классификация рядов динамики. Показатели анализа рядов динамики: интенсивности изменения ряда динамики; средние показатели ряда динамики
Статистические данные, характеризующие изменения явлений во времени, называются динамическими (хронологическими или временными) рядами. Такие ряды строят для выявления и изучения складывающихся закономерностей в развитии явлений экономической, политической и культурной жизни общества.
Правильно построенный динамический ряд состоит из сопоставимых статистических показателей. Для этого необходимо, чтобы состав изучаемой совокупности был один и тот же на всем протяжении ряда, т.е. относился к одной и той же территории, к одному и тому же кругу объектов и был рассчитан по одной и той же методологии. Кроме того, данные динамического ряда должны быть выражены в одних и тех же единицах измерения, а промежутки времени между значениями ряда должны быть по возможности одинаковыми.
Виды динамических рядов. В зависимости от характера изучаемых величин различают три вида динамических рядов: моментные, интервальные и ряды средних.
Моментными рядами называются статистические ряды, характеризующие размеры изучаемого явления на определенную дату, момент времени.
Интервальными рядами называются статистические ряды, характеризующие размеры изучаемого явления за определенные промежутки (периоды, интервалы) времени.
Вычисление средней динамического ряда. Для общей характеристики какого-либо явления за определенный период рассчитывают средний уровень из всех членов динамического рада.
Способы его расчета зависят от вида динамического ряда. Для интервальных рядов средняя рассчитывается по формуле средней арифметической, причем при равных интервалах применяется средняя арифметическая простая, а при неравных - средняя арифметическая взвешенная.
Для нахождения средних значений моментного ряда применяют среднюю хронологическую.
Если интервалы между периодами не равны, то применяется средняя арифметическая взвешенная, а в качестве весов берутся отрезки времени между датами, к которым относятся парные средние смежных значений уровня.
Основные показатели анализа динамических рядов
Динамические ряды анализируются при помощи таких показателей, как уровень ряда, средний уровень, абсолютный прирост, темп роста, коэффициент роста, темп прироста, темп наращивания, коэффициент опережения, абсолютное значение одного процента прироста.
Уровнем ряда называется абсолютная величина каждого члена динамического ряда. Понятно, что все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровень ряда.
Начальный уровень — это величина первого члена ряда, конечный — последнего, средний уровень — средняя из всех значений динамического ряда.
Абсолютный прирост характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени. Он определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым производится сравнение, называется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели. Если же все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными.
Для динамического ряда у0, у1, у2, ..., уп-1, уп, состоящего из п+1 уровней, абсолютный прирост определяется по формулам:
цепной —
базисный —
,
где уi — текущий уровень ряда;
уi-1 — уровень, предшествующий уi
у0 — начальный уровень ряда.
Средний абсолютный прирост можно рассчитать по формуле
где
— средний абсолютный
прирост;
уп — конечный уровень ряда;
у0 — начальный уровень ряда.
В ряде случаев изучаемое явление растет неравномерно, под воздействием многих факторов, силы и направление влияния которых из года в год меняются. Так, размеры продукции растениеводства зависят от многих факторов, в том числе и от метеорологических условий. Поэтому для определения роста производства зерна или другой продукции растениеводства правильнее сравнивать не ежегодные уровни валового сбора урожая, а средние — за определенные периоды времени, допустим, за пятилетия или десятилетия.
Для характеристики относительной скорости изменения уровня динамического ряда в единицу времени вычисляют показатели темпа роста и темпа прироста.
Темпом роста называется отношение данного уровня явления к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными, а к начальному — базисными.
Темпы роста вычисляются по формулам:
Цепной -
%
Базисный -
%
где у1 — текущий уровень ряда; у._г — уровень, предшествующий}'.; у0 — начальный уровень ряда.
Если темпы выражены в виде простых отношений, т.е. база сравнения принимается за 1, а не за 100%, то полученные показатели называются коэффициентами роста.
Темпом прироста называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах. Темп прироста можно рассчитать по данным о темпе роста. Для этого надо от темпа роста отнять 100% или от коэффициента роста — 1, в последнем случае получим коэффициент прироста Кп .
Темпы прироста рассчитываются по следующим формулам:
Цепной
Базисный
Для характеристики темпов роста и прироста в среднем за весь период, охватываемый рядом динамики, исчисляют средний темп роста и прироста.
Средний темп (коэффициент) роста определяется по формуле средней геометрической. Когда средний темп роста вычисляется по абсолютным данным первого и последнего членов динамического ряда, применяется следующая формула средней геометрической:
%
где, у1 — начальный уровень; уn — конечный уровень; п — число членов ряда.
Если абсолютные данные динамического ряда отсутствуют, а имеются цепные коэффициенты роста (по сравнению с предыдущим периодом), средний коэффициент роста определяется по формуле:
где К1 К2 К3 ...Кn — коэффициенты роста за каждый период.
Отношение абсолютного прироста к темпу прироста представляет собой
абсолютное значение одного процента по формуле: