
- •Яковлев б.С., доцент, канд. Техн. Наук конспект лекций
- •Технология репрографического производства
- •090900 «Информационная безопасность»
- •Содержание
- •1. Микрофильмирование. Определение повреждений материалов, работа с ними, и действия в случае чрезвычайных ситуаций
- •1.1. Сохранение и консервация
- •1.2. Виды материалов
- •Кожа и пергамент
- •Пальмовые листья
- •Чернила
- •1.3. Факторы среды, вызывающие повреждения, и способы снижения их воздействия
- •Видимый свет, ультрафиолетовое (uv) и инфракрасное излучение
- •Снижение воздействия
- •Температура и относительная влажность
- •Снижение воздействия
- •Оптимальный контроль среды
- •Окружающая среда
- •Атмосферные загрязнения
- •Снижение воздействия
- •Улучшение условий окружающей среды
- •Практические меры по улучшению условий среды
- •Поддержание порядка
- •1.4. Другие факторы, вызывающие повреждения: биологический и человеческий факторы, неправильное хранение
- •Плесень и грибы
- •Борьба с насекомыми
- •1.5. Действия в чрезвычайных ситуациях Предотвращение и оценка риска
- •Подготовка
- •Действия при чрезвычайных ситуациях
- •Восстановление
- •2. Основы плёнки и их способность к сохранению данных
- •2.1. Типы пленок
- •Полиэстер
- •2.2. Кратность
- •2.3. Организация изображений
- •Микрофильм
- •Микрофиша
- •2.4. Плотность
- •2.5. Разрешение
- •2.6. Индекс качества
- •3. Технический контроль микроформ
- •3.1. Плотность
- •3.2. Уровень контрастности
- •Измерения плотности
- •Уровни плотности
- •Дополнительные рекомендации
- •Уровни плотности – только ориентир
- •Цель однородной плотности
- •Измерение плотности
- •3.3. Разрешение
- •Вычисление разрешения
- •Показатели разрешения
- •3.4. Индекс качества
- •Показатели индекса качества
- •3.5. Основа плёнки
- •Тестирование основы плёнки мастер-негатива
- •3.6. Тест на разрывы
- •Тест на поляризацию
- •3.7. Проверка уровня химикатов
- •Тест с применением сини метилена
- •3.8. Частота тестирования
- •Требования, предъявляемые к тестированию
- •4. Жидкостное проявление
- •4.1. Общие понятия
- •4.2. Жидкий проявитель
- •5. Общая схема ксерографического процесса
- •5.1. Общие сведения
- •5.2. Нанесение заряда на электрофотографический слой. Экспонирование
- •5.3. Проявление скрытого электростатического изображения
- •5.4. Проявляющий электрод.
- •5.5. Двухкомпонентный магнитный проявитель
- •5.6. Проявление скрытого электростатического изображения магнитной кистью
- •5.7. Порошковое облако
- •6. Электрофотографическое копирование
- •6.1. Общие сведения об электростатических способах копирования
- •6.2. Общая схема метода «Электрофакс»
- •6.3. Особенности электрографических печатающих устройств цифровых копировальных аппаратов
- •6.4. Общие сведения о строении и работе черно-белых копировальных аппаратов аналогового типа
- •6.5. Управление работой аппарата
- •7. Основные виды сканирующего оборудования и область их применения
- •7.1. Общие сведения
- •7.2. Краткий обзор оборудования и методов, применяемых при сканировании книг и документов
- •Профессиональные книжные сканеры
- •Современный «бытовой» и «офисный» сканер
- •3D сканеры
- •8. Общий обзор и сравнительная характеристика графических редакторов
- •8.1. Растровые редакторы
- •Ключевые особенности и характеристики Adobe Photoshop
- •8.2. Векторные редакторы
- •Стандартная Панель инструментов
- •8.3. Flash редакторы
- •8.4. 3D редакторы
- •9. Электронные книги, их создание, чтение и распространение
- •9.1. Общие сведения
- •9.2. Графические растровые форматы
- •9.3. Графические векторные форматы с оформлением
- •Простой текст (plain text)
- •9.4. Наиболее популярные форматы
- •DjVu-технологии
- •10. Основа синтаксиса языка html
- •10.1. Общая структура html документа
- •10.2. Тело html-документа. Его основная часть.
- •10.3. Основные теги и их синтаксис Работа с текстом
- •Теги для форматирования абзацев.
- •Параметр align
- •Синтаксис
- •Значения
- •Синтаксис
- •Параметры:
- •Синтаксис
- •Значения
- •Параметры
- •Синтаксис
- •Значения
- •1.1.1.Синтаксис
- •Синтаксис
- •Значения
- •Значение по умолчанию
- •Элемент id
- •11. Синтаксис frame, table, div элементов
- •11.1. Синтаксис frame элемента
- •Описание фреймовой структуры
- •Описание фрейма
- •"Пустой" документ
- •Стандартные имена для фреймов
- •Создание и использование "плавающих" фреймов
- •11.2. Синтаксис table элемента
- •11.3. Синтаксис div элемента
- •12. Общие сведения о css технологии, основы синтаксиса
- •12.1. Общие сведения о css технологии
- •12.2. Синтаксис и принцип работы css
- •12.3. Способы подключения css таблиц к html документу
- •12.4. Свойства элементов css Цвет и фон в css
- •Свойство background-color
- •Свойство background-image
- •Свойство background-attachment
- •Сокращенная форма записи – background
- •Свойство text-indent
- •Свойство text-transform
- •Свойство letter-spacing
- •Оформление ссылок в css
- •Типы селекторов в css
- •Селектор по элементу
- •Селектор id
- •Контекстный селектор
- •Блоковая модель в css
- •Окантовка в css
- •Свойство border-width
- •Свойство border-color
- •Поля (margin) и отступы (padding)
- •13. Основные понятия, синтаксис языка Java Script
- •13.1. Переменные и действия над ними
- •13.2. Функции
- •13.3. Массивы
- •13.4. Циклы
- •14. Краткий обзор популярных форматов графических файлов
- •14.1. Общие сведения
- •14.2. Растровые графические форматы
- •14.3. Векторные графические форматы
- •14.4. Трёхмерная графика (3d, 3 Dimensions)
- •15. Дизайн электронных изданий. Основные принципы создания макета.
- •15.1. Работа дизайнера при подготовке макетов с заказчиком
- •15.2. Технические особенности создания макетов
- •15.3. Специфика дизайна макетов exe-книг
- •Краткий вывод
- •16. Основные виды верстки электронных изданий, их сравнение
- •16.1. Верстка на основе frame, table, div. Основные отличия и недостатки Фреймовая верстка
- •Преимущества таблиц
- •Создание колонок
- •«Склейка» изображений
- •Фоновые рисунки
- •Выравнивание элементов
- •Особенности браузеров
- •Долгая загрузка
- •Громоздкий код
- •Плохая индексация поисковиками
- •Нет разделения содержимого и оформления
- •Несоответствие стандартам
- •Применение таблиц для верстки
- •Высота колонок должна быть одинаковой
- •Нет времени на сложную верстку
- •Цвет фона
- •Границы
- •16.2. Верстка электронных книг pdf и DjVu-форматов
- •Библиографический список
6.2. Общая схема метода «Электрофакс»
Поиски путей разработки электрографических аппаратов, имеющих невысокую стоимость, небольшую массу и простую конструкцию, привели к созданию электрографических аппаратов оригинальной конструкции, у которых отсутствует фотополупроводниковая поверхность, многократно используемая для переноса изображения.
В 1954 г. английской фирмой RCA предложен модифицированный вариант ксерографического метода, именуемый в литературе методом «Электрофакс». В нем вместо пластины или цилиндра с нанесенным фотополупроводниковым слоем применяется фотополупроводниковая бумага. Разработка метода «Электрофакс» направила промышленное развитие ксерографии по двум принципиально отличным направлениям: создание аппаратов с переносом изображения и без переноса изображения с выводом копий на специальную фотополупроводниковую бумагу. Фотополупроводниковый слой, состоящий из порошка окиси цинка, диспергированного в смоляном связующем, наносят на бумажную подложку. Такой материал служит светочувствительным слоем, а после проявления и закрепления изображения — окончательной копией. Технология ксерографического метода «электрофакс» отличается от предыдущей лишь тем, что в ней отсутствует операция переноса проявленного изображения на бумагу или другие носители.
Схема процесса «Электрофакс»:
1 — кассета с фотополупроводниковой бумагой; 2 — бумагопроводящий тракт; 3 — устройство зарядки бумаги; 4 — оригинал; 5 — осветители;
6 — зеркало; 7 — объектив; 8 — скрытое электростатическое изображение оригинала; 9 — устройство проявления; 10 — узел закрепления; 11 — узел сушки бумаги; 12 — лоток для изготовленных копий
В настоящее время методы ксерографии реализованы с помощью широкой номенклатуры технических средств.
6.3. Особенности электрографических печатающих устройств цифровых копировальных аппаратов
Как было сказано ранее, цифровые копировальные аппараты состоят из сканера, процессора и электрографического печатающего устройства.
Оптические системы цифровых копировальных аппаратов
В отличие от аналоговых, цифровые копировальные аппараты формируют изображение из отдельных точек, размер и расположение которых определяются сигналами, поступающими из процессора изображений. Для записи такого точечного (растрового) изображения применяются лазеры и светодиодные линейки с инфракрасным излучением. При лазерной записи используется капстановый метод, в основе которого - веерная развертка модулированного лазерного луча в горизонтальной плоскости. Для этого используют вращающееся с большой скоростью многогранное зеркало (рисунок ниже).
Схема записи изображения с помощью лазерной развертки:
1 - лазерный блок; 2 - коллиматорная линза; 3 - многогранное зеркало; 4 - двигатель лазерного сканера; 5 - корректирующая линза; 6 - отражающее зеркало; 7 - фоторецептор; 8 - датчик начала строки
Угловое перемещение лазерного луча идет с постоянной скоростью. Веер лазерной развертки попадает на зеркало, отражающее излучение в сторону фоторецептора. Это зеркало параллельно образующей фоторецептора, и лазерное световое пятно перемещается строго по образующей цилиндра. Линейная скорость пятна по поверхности зеркала и фоторецептора непрерывно изменяется, так как изменяется угол его падения на зеркало. Чтобы этого не было, на пути лазерного веера размещают корректирующую линзу сложной формы. Ее задача - линеаризация, в результате которой лазерный луч движется по зеркалу и фоторецептору равномерно. Однако такой способ позволяет проводить линеаризацию при угле падения луча до 60°, что соответствует в копировальных аппаратах формату изображения до А3. Для больших форматов (А2-А0) необходим другой способ записи, например с помощью светодиодных линеек.
Разрешающая способность записи по горизонтали зависит от того, сколько лазерных световых пятен умещается в миллиметре или в дюйме (25,4 мм). Каждому пробегу лазерного луча вдоль образующей цилиндрического фоторецептора соответствует поворот цилиндра на один шаг, величина которого определяет разрешение аппарата по вертикали. При разрешающей способности 400-600 dpi (16-24 мм-1) шаг смещения линии лазерной записи составляет 0,04-0,06 мкм.
Модулирование лазерного луча осуществляется включением и выключением лазера в соответствии с программой и изменением интенсивности луча. От фокусировки лазерного луча и возможностей его модулирования зависит разрешающая способность аппарата по горизонтали.
Все более широкое применение находит экспонирование с помощью светодиодных линеек. Линейки представляют собой матрицу, включающую более 5000 отдельных лазерных светодиодов (по одному для каждой точечной позиции) на полосе экспонирования цилиндрического фоторецептора (рисунок ниже).
Запись изображения на фоторецепторе с помощью светодиодной линейки: 1 - узел экспонирования; 2 - фоторецептор
Частота расположения светодиодов в линейке определяет разрешающую способность аппарата. По мере вращения фоторецептора светодиоды включаются и выключаются в соответствии с программой. Светодиодные линейки нашли основное применение в принтерах и цифровых печатных машинах.
В быстродействующих аппаратах, где на экспонирование отводится короткий промежуток времени, актиничность падающего на фоторецептор излучения должна быть как можно выше. Фоторецептор и источник света (лазер) подбираются так, чтобы фоторецептор имел высокую чувствительность к излучению лазера.
В электрофотографических аппаратах используют полупроводниковые лазеры - с длиной волны излучения в диапазоне 700-800 нм и выходной мощностью 5-15 мВт. Таковы GaAlAs-лазеры, имеющие длину волны излучения 780 нм. К этим излучениям чувствительны практически все используемые для современных фоторецепторов фотопроводники: органические фотопроводники, аморфный кремний, многокомпонентные халькогениды. Основной тип фоторецепторов в цифровых копировальных аппаратах - органические.
Особенности проявления скрытого электростатического изображения в цифровых копировальных аппаратах
В цифровых аппаратах легко реверсировать работу лазерной развертки, записывая вместо позитивного негативное изображение. Поэтому можно сделать позитивную копию двумя путями.
Получать позитивное скрытое электростатическое изображение (СЭИ) и проявлять его прямым способом. При этом тонер имеет заряд противоположного знака и осаждается в большей степени на участках СЭИ с высокой плотностью заряда (большим потенциалом). Неэкспонированные участки, темные на оригинале, выходят темными и на изображении, так как СЭИ этих участков - с большой плотностью заряда.
Получать негативное СЭИ, а для его визуализации использовать обращенное проявление, при котором тонер имеет одинаковый заряд с СЭИ. На проявляющий электрод подается потенциал чуть меньше максимального потенциала СЭИ (эта разница составляет потенциал смещения, обеспечивающий чистый фон). Возникает электрическое поле, напряженность которого в участках СЭИ, имеющих большие потенциалы, будет маленькой, так как эти потенциалы почти не отличаются от потенциала проявляющего электрода. В участках СЭИ, где потенциал мал или равен нулю, напряженность поля большая и тонер, отталкиваясь от одноименно заряженного проявляющего электрода, летит к фоторецептору.
Обращенное проявление используется в ряде цветных аппаратов и в цифровых печатных машинах.