Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекція 7.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
49.57 Кб
Скачать

6. Шкали відношень

Нехай величини, що спостерігаються, задовольняють аксіомам тотожності 1-3, аксіомам упорядкованості 4, 5, а також аксіомам адитивності:

6.Якщо А = РіВ>0, то А + В>Р.

7.А + В = В + А.

8.Якщо А = РіВ =Q,то А + В = Р + Q.

9.(А + В) + С = А + (В + С).

Результати таких вимірювань є повноцінними числами й з ними можна виконувати будь-які арифметичні операції. Відповідна шкала називається шкалою відношень. При її побудові використовується природний (абсолютний) нуль, однак зберігається свобода у виборі одиниці вимірювань. Зв'язок між значеннями вимірів однієї й тієї самої величини у двох різних шкалах відношень є прямо пропорційним:

у = ах(а≠0). Відповідно, відношення для будь-якого виміру не залежить від обраної шкали. Прикладами величин, що вимірюють у шкалі відношень, є маса, електричний заряд, кінетична енергія, гроші й таке інше.

Питання. Як Ви вважаєте, чи є абсолютна шкала температур Кельвіна шкалою відношень?

7. Абсолютна шкала

Абсолютна шкала має абсолютний нуль і абсолютну одиницю виміру. Її прикладом може бути числова вісь. Важливою особливістю такої шкали є безрозмірність її одиниці. Це дає змогу не тільки виконувати з показаннями абсолютної шкали всі арифметичні операції, а й використовувати їх як показники ступеневої функції, а також аргументи показникової та логарифмічної функцій.