
- •1.Понятие метода и методики анализа. Характеристики методики.
- •2.Физ. Основы рефрактометрического метода. Коэффициент преломления.
- •3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •5. Принцип действия рефрактометра Пульфриха.
- •6. Рефрактометр автоматический непрерывный.
- •7. Применение рефрактометрии для идентиф в-ва и контроля качества.
- •8. Физ. Основы поляриметрического метода.
- •9. Типы оптической активности.
- •10. Зависимость угла вращения плоскости поляризации от строения в-ва
- •11. Спекрополяриметрический метод.
- •12. Принцип действия кругового поляриметра. Схема прибора.
- •13. Устройство клиновых поляриметров.
- •14. Применение поляриметрии и спектрополяриметрии.
- •15. Физ. Основы нефелометрии и турбидим. Рассеяние и поглощение света.
- •16. Основные требования к химическим реакциям и условия их проведения.
- •17. Приборы нефелометрического анализа.
- •18. Приборы турбидиметрического анализа.
- •19. Применение нефелометрии и турбидиметрии.
- •20. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
- •21.Физ. Основы спектрального анализа.
- •22. Схемы энергетических переходов в атомах.
- •23. Схемы энергетических переходов в молекулах.
- •24. Способы атомизации вещества и возбуждения атомов в атомно-эмиссионной спектроскопии.
- •25. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
- •26. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
- •27. Условия и механизм атомизации и возбуждения в-ва в атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой.
- •28. Вид и основные характеристики спектров атомной эмиссии. Зависимость вида спектра от природы элемента и способа его возбуждения.
- •29. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •30. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
- •31. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
- •32. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
- •34. Структура таблиц характеристических спектров элементов и атласов спектров.
- •35. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
- •36. Качественная идентификация спектральных линий в спектрах атомной эмиссии.
- •37. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
- •38. Полуколичественный метод сравнения в атомно-эмиссионном анализе.
- •39. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
- •40. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе.
- •41. Уравнение Ломакина-Шейбе.
- •42.Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
- •43. Метод добавок в количественном атомно-эмиссионном анализе.
- •44. Основы, преимущества и недостатки количественного атомно-эмиссионного анализа с использованием фотоэлектрического детектирования.
- •45. Аналитические характеристики и применение атомно-эмиссионной спектроскопии.
11. Спекрополяриметрический метод.
Луч света от кварцевой лампы 1, дающей излучение ультрафиолетового и видимого диапазона, поступает на монохроматор 2, выделяющий участок спектра определенной длины волны. Далее этот монохроматический луч попадает на кварцевый поляризатор 3.
Рис. 1 Блок-схема спектрополяриметра
проходит через кювету 4, в которой помещено оптически активное вещество, и попадает на модулятор 5. Модулированный свет попадает на анализатор 6, настроенный на темноту, и на ФЭУ 7, способный улавливать очень слабый свет. Сигнал от фотоумножителя передается на регистрирующее устройство, связанное с монохроматором. На ленте регистрирующего устройства 8 сразу вычерчивается кривая ДОВ.
12. Принцип действия кругового поляриметра. Схема прибора.
Оптическая схема поляриметра СМ-3 включает в себя натриевую лампу I1I, светофильтр /2/, конденсор /3/, поляризатор /4/, хроматическую фазовую пластинку /5/, защитное стекло /6/, два покровных стекла /7/, трубку /8/. анализатор /9/, объектив /10/, окуляр /11/ и две лупы /12/.
Свет от лампы, пройдя через конденсор и поляризатор, одной частью пучка проходит через хроматическую фазовую пластинку, защитное стекло, кювету и анализатор. А другой частью пучка только через защитное стекло, кювету и анализатор. При этом одна половина поля зрения поляриметра затемнена, а вторая светлая.
Уравнивание яркостей полей сравнения проводят путем вращение анализатора.
Если между анализатором и поляризатором помещают кювету с раствором оптически активного вещества, то равенство яркостей полей сравнения нарушается. Его восст-ют поворачивая анализатор на угол, равный углу поворота плоскости поляризации раствором. След-но, угол вращения пл-ти поляризации данным раствором определяется разностью двух отсчетов, соответствующих яркости полей сравнения с оптически активным раствором и без него.
Для большинства оптически активных веществ удельное вращение мало зависит от концентрации и угол вращения пропорционален концентрации:
=[]*L*C,
где -угол вращения плоскости поляризации раствором в градусах; []- удельное вращение измеряемого оптически активного вещества для длины волны 589 нм при температуре 20°С; L- длина кюветы, дм; С- концентрация, г/см3.
Зная измерение на поляриметре угла вращения плоскости поляризации в градусах, можно определить концентрацию веществ в г/см3 :
C = / []*L.
При измерении на поляриметре угла вращения плоскости поляризации правовращающими оптически активными растворами отсчеты по шкале первого отсчетного устройства и лимбу будут с наибольшей точностью определяться для диапазона 0-35°. При измерении на поляриметре угла вращения плоскости поляризации левовращающими оптически активными растворами отсчеты по шкале первого отсчетного устройства и лимбу будут с наибольшей точностью определяться для диапазона от 360° до 325°. При необходимости можно проводить измерения углов вращения плоскости поляризации более ± 35°. Погрешность измерения в данном случае может быть определена экспериментально.