- •Содержание
- •Токсичность 185
- •Химия гидросферы 193
- •Химия литосферы 210
- •Часть I. Основные вопросы химии окружающей среды
- •Глава 1. Введение
- •1.1. Что такое химия окружающей среды?
- •1.2. Возникновение химических элементов1
- •1.2.1. Возникновение Вселенной
- •1.2.2. Образование звезд
- •1.2.3. Возникновение Солнечной системы
- •Контрольные вопросы
- •Глава 2. История области действия химии окружающей среды
- •2.1. Возникновение и история Земли
- •2.1.1. Образование Земли
- •2.1.2. Дифференциация мантии и образование геосфер
- •2.1.3. Эволюция атмосферы
- •2.1.4. Возникновение жизни и проблема хиральности
- •2.1.5. Критические уровни содержания кислорода в атмосфере
- •2.1.6. Этапы эволюции биосферы
- •Контрольные вопросы
- •Глава 3. Область действия химии окружающей среды
- •3.1. Земля
- •10 Самых распространенных химических элементов (% по массе)
- •3.2. Ядро и мантия
- •3.3. Земная кора
- •3.4. Гидросфера
- •3.5. Атмосфера
- •3.6. Биосфера
- •Контрольные вопросы
- •Глава 4. Природные циклы
- •4.1. Эндогенный и экзогенный циклы
- •Гидрологический цикл
- •4.3.Циклы биогенных элементов
- •Контрольные вопросы
- •Глава 5. Миграция веществ
- •5.1. Механическая
- •5.2. Физико-химическая
- •5.3. Биогенная
- •Контрольные вопросы
- •Глава 6. Загрязнение окружающей среды
- •6.1. Понятие о загрязнении
- •6.2. Виды загрязняющих веществ
- •6.3. Токсикология
- •6.4. Токсичность
- •6.5. Типы токсического воздействия загрязняющих веществ
- •2.6. Определение пдк
- •Контрольные вопросы
- •Глава 7. Химия атмосферы
- •7.1. Состав и строение атмосферы
- •7.2. Примеси тропосферы
- •7.3. Городской смог
- •7.4. Стратосферный озон
- •7.5. «Парниковый эффект»
- •7.6. Радиоактивное загрязнение атмосферы
- •7.6.1. Радон
- •7.6.2. Изотопы в окружающей среде
- •7.6.3. «Искусственная» радиоактивность
- •Контрольные вопросы
- •Глава 8. Химия гидросферы
- •8.1. Составляющие гидросферы
- •Мировые запасы воды (Крупнова, 2005)
- •8.2. Аномальные свойства воды и состав природных вод
- •8.3. Водопроводная вода
- •8.4. Химическое загрязнение гидросферы
- •8.4.1. Очистка сточных вод
- •8. Сооружения по обработке осадков сточных вод24
- •О рганические
- •Осадок сточных вод
- •8.4.2. Последствия загрязнения бытовыми сточными водами. Эвтрофикация.
- •8.4.3 Загрязнение углеводородами
- •8.4.4. Загрязнение вод металлами
- •8.4.5. Загрязнение вод синтетическими органическими веществами
- •8.4.6. Пестициды
- •8.4.8. Cинтетические поверхностно-активные вещества
- •Контрольные вопросы
- •Глава 9. Химия литосферы
- •9.1. Состав и строение литосферы
- •9.2. Процессы выветривания
- •9.3. Добыча, переработка и использование природных ресурсов (минеральных)
- •9.4. Почвы. Химический состав, свойства, загрязнение
- •9.4.1. Общие для большинства почв реакции
- •9.4.2. Химическое загрязнение почв
- •Контрольные вопросы
- •Глава 10. Экологический мониторинг
- •Контрольные вопросы
- •Часть II. Практикум по химии окружающей среды
- •I. Техника безопасности и правила поведения в лаборатории
- •1. Общие правила работы в лаборатории
- •2. Техника безопасности и меры предосторожности
- •II. Токсичность Лабораторная работа №1 Воздействие табачного дыма на организм человека
- •Теоретическая часть
- •Экспериментальная часть
- •Задание
- •Лабораторная работа №2 Определение влияния ионов металлов на активность каталазы
- •Теоретическая часть
- •Экспериментальная часть
- •Теоретическая часть
- •Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа №2 Определение растворенного в воде кислорода
- •Теоретическая часть
- •Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа №3
- •Теоретическая часть
- •Экспериментальная часть
- •2.1. Определение содержания свободной углекислоты
- •2.2. Определение содержания карбонат-ионов.
- •2.3. Определение содержания гидрокарбонат-ионов.
- •Контрольные вопросы
- •IV. Химия гидросферы Лабораторная работа №1 Определение остаточного хлора
- •Теоретическая часть.
- •Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа №2 Определение железа
- •Теоретическая часть
- •Экспериментальная часть
- •2.1. Качественное определение с приближенной количественной оценкой.
- •2.2 Количественное определение общего содержания железа.
- •Контрольные вопросы
- •Лабораторная работа №3 Определение окисляемости природных и сточных вод
- •Теоретическая часть
- •Экспериментальная часть
- •2.1. Определение перманганатной окисляемости
- •Определение бихроматной окисляемости
- •Контрольные вопросы
- •Теоретическая часть
- •Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа №2 Адсорбция меди в почве
- •Теоретическая часть
- •Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа №3 Определение содержания фосфатов в почве
- •Теоретическая часть
- •Экспериментальная часть
- •Ход работы: Построение градуировочного графика
- •Последовательность выполнения измерений на фотоколориметре
- •Определение содержания фосфатов в почве
- •Контрольные вопросы
- •Б иблиографический список
Удобрение
осадками
Превращение
неплодородных почв в плодородные
Активный
ил как кормовой продукт
Использование в жировой промышленности
песчаных
торфяных
Применение в
строительной промышленности и дорожных
работах
«белвитамил»
смесь кормовых
дрожжей с активным илом
Использование в химической промышленности
смеси по линии
комбикормового производства
Использование газа метантенков
изготовление
мыла
изготовление
технических жиров
и смазок
заполнители
керамзита и др. материалов
трубы изоляционные
связующие материалы
для дорожных работ
витамин В12
белковые
вещества
аминокислоты
продукты сухой
перегонки
тепловая
механическая и электрическая энергия,
заменитель бензина, сухой лёд, пластмассы,
четырехлористый углеродОсадок сточных вод
сухими (вл.25-10%)
обезвоженными
(вл.80-60%)
жидкими(вл.99,5-93,0%)
получение полезных
материалов из
шлаков
Рис. 8. Схема утилизации осадков сточных вод.
8.4.2. Последствия загрязнения бытовыми сточными водами. Эвтрофикация.
Очень важное последствие бытового загрязнения вытекает из того, что недостаточно очищенные сточные воды, кроме большого количества органических веществ, несут и много биогенных элементов. Результатом этого становится антропогенное эвтрофирование27 водоемов и водотоков.
Эвтрофирование - нарушение баланса питательных веществ водной экосистемы, ведущее к изменению ее трофического статуса.
Главными агентами эвтрофирования могут выступать соединения азота и фосфора, главным образом, в виде нитратов и фосфатов.
В конце 1960-х было широко распространено убеждение о загрязнении рек, озер и подземных вод нитратами из бытовых сточных вод, сточных вод животноводческих комплексов и, особенно, возделываемых полей.
Наибольшие опасения вызывал тот факт, что высокое содержание нитратов в воде может вызвать заболевания. Например, метгемоглобинемию, или синдром «blue-baby» – у детей младше 6 мес. Заболевание это чрезвычайно редкое, но между 1945 и 1960 в мире было зарегистрировано 2000 его случаев. В США погиб 41 младенец, в Европе – 80. Нитраты подозревались и в том, что они могут реагировать с аминами и амидами с образованием канцерогенов: нитрозаминов и нитрозамидов. Экспериментальные исследования сняли эти подозрения (Allaby, 2000).
Главной угрозой, которую представляют нитраты для окружающей среды, является эвтрофирование водоемов.
Источники поступления агентов эвтрофирования:
естественное вымывание питательных веществ из почвы и выветривание пород.
сбросы частично очищенных или неочищенных бытовых сточных вод, содержащих органические соединения азота и фосфора, нитраты и фосфаты.
смыв неорганических удобрений, содержащих нитраты и фосфаты.
смыв с ферм навоза, содержащего органические соединения азота и фосфора, нитраты, фосфаты, и аммиак.
смывы с нарушенных территорий (шахты, отвалы, стройки, неправильное использование земель).
сбросы детергентов, содержащих фосфаты.
поступление нитратов из атмосферы.
Еще в 1915 г. Тинеманн предложил различать по трофности (от «трофе», гр. – питание) эвтрофные («хорошо питающиеся», «тучные») и олиготрофные («недостаточно питающиеся») водоёмы.
Классификация оказалась очень удачной, естественной и применяется, в несколько модифицированном виде (добавлены гиперэвтрофные, мезотрофные, ультраолиготрофные, дистрофные водные объекты), по настоящее время.
Дистрофные (гр. trophe - пища, dys - отсутствие, отрицание) водоемы характеризуются превышением скорости деструкции органических веществ над скоростью фотосинтеза.
Олиготрофные (oligo - бедный) водоемы имеют сбалансированные скорости продукционно-деструкционных процессов.
В эвтрофных (eu - хороший, избыточный) водоемах наблюдается цветение водорослей и накопление органических веществ, так как скорости продукции превышают скорости деструкции.
Между этими градациями выделяют промежуточные: ультра-олиготрофные - между дистрофными и олиготрофными и мезотрофные - между олиготрофными и эвтрофными. При антропогенном эвтрофировании скорость фотосинтеза резко увеличивается вследствие поступления в водоемы питательных веществ со сточными водами и поверхностным стоком.
Связь эвтрофирования водоемов с обогащением их фосфором и азотом вытекает из схемы балансового уравнения фотосинтеза:
солн.свет
1
0СО2
+ 90 Н2О
+ 16NO3-
+ PO43-
С106Н180N16P
+ 154O2
+ Qтепл
Согласно закону действующих масс при увеличении концентрации азота и фосфора скорость прямой реакции, т. е. скорость фотосинтеза, возрастает, что и приводит к эвтрофированию.
Имеет значение также соотношение основных питательных элементов, используемых водорослями. Считается, что максимальная скорость роста достигается в воде, в которой соотношение углерода, азота и фосфора (С:N:Р) соответствует их атомно-массовому отношению в составе вещества водорослей. Для фитопланктона в среднем оно приближается к 106:16:1. Всякое отклонение отданного соотношения в окружающей среде говорит об изменении обеспеченности водорослей питательными веществами.
Роль фосфора в эвтрофировании заслуживает особого рассмотрения в связи с тем, что он не содержится в атмосфере, а резервный фонд его находится в земной коре. Долгое время именно фосфор, как труднодоступный элемент, лимитировал эвтрофирование. Сейчас концентрация растворенных фосфатов в бытовых стоках возрастает вследствие широкого применения фосфатсодержащих моющих средств. В природных водах растворенный неорганический фосфор (РНФ) присутствует преимущественно в виде различных продуктов диссоциации ортофосфорной кислоты Н3РО4.
Н
3РО4
(водн) Н2РО4
-(водн)
+ Н+
(водн)
Н 2РО4 -(водн) + Н+ (водн) НРО4 2-(водн) + 2Н+ (водн)
Н РО4 2-(водн) + 2Н+ (водн) РО4 3-(водн) + 3Н+ (водн)
В почвах фосфор обычно удерживается в результате осаждения нерастворимых фосфатов кальция и железа, адсорбции на гидроксидах железа или адсорбции на частицах почвы. Таким образом, РНФ в реках возникает в основном из-за прямых поступлений, например, сточных вод. Поскольку в отложениях фосфор присутствует обычно в виде нерастворимого фосфата железа (III) (FеРO4), в восстановительных условиях (например, таких, какие встречаются в отложениях, когда потребление кислорода превышает его поступление) РНФ может вернуться в столб воды при восстановлении железа (III) до железа (II).
Химия азота сложна, поскольку азот может присутствовать в нескольких окисленных состояниях, из которых N(0) — газ азот (N2), N(3-) — аммоний (NH4+) и N(5+) — нитрат (NO3-) являются наиболее важными. Газообразный азот, растворенный в речной воде, не может быть использован большинством высших растений и водорослей как источник азота, поскольку они не могут разорвать его сильную тройную связь. Существуют особые «азотфиксирующие» бактерии, использующие N2, однако это энергетически невыгодный путь получения азота. Следовательно, такие микроорганизмы получают преимущество только тогда, когда N2 является единственным доступным источником азота. Тем не менее, наряду с фиксацией N2 молниями азотфиксирующие микроорганизмы обеспечивают основной природный источник азота в реках.
В биологических процессах азот используется в состоянии 3-, в основном в виде аминогрупп белков. Это окислительное состояние предпочтительно для поглощения водорослями, а также является формой, в которой азот высвобождается в процессе разложения органического вещества, в основном в виде NH4+. Однажды попав в почвы или воды, NH4+, будучи катионом, может быть адсорбирован на отрицательно заряженных пленках органического вещества, покрывающих почвенные частицы или поверхностях глинистых минералов. Аммоний потребляется также высшими растениями или водорослями или же окисляется до NO3-— этот процесс обычно катализируется бактериями.
В отличие от NH4+,NO3- является анионом, который растворим и не удерживается в почвах. Поэтому NO3- дождевой воды или из удобрений, а также появляющийся в результате окисления почвенного органического вещества и отходов животных вымывается из почв в реки. Помимо биологической ассимиляции, денитрификация в средах с низким содержанием кислорода является наиболее важным путем, посредством которого нитраты удаляются из почв, рек и подземных вод.
Другое важное питательное вещество, кремний, используется диатомеями (группа фитопланктона) для построения их экзо-скелета. Диатомеи способны к быстрому и обильному росту в богатых питательными веществами условиях. В реках умеренных областей цветение диатомовых водорослей происходит в начале года, поэтому уровень содержания кремния падает ранней весной с началом роста диатомовых водорослей и вновь повышается летом, когда диатомеи вытесняются другими группами водорослей. Поскольку поступление кремния происходит в основном в результате реакций выветривания, его природно низкие концентрации могут сильно уменьшаться во время цветения диатомеи, до такой степени, что дальнейший их рост тормозится. Таким образом, кремний ограничивает разнообразие видов, но не общую биомассу фитопланктона.
Эвтрофирование водоемов зависит не только от нагрузки на водоем биогенных веществ, но и от условий развития автотрофных гидробионтов, т. е. от климатических, гидродинамических и морфологических особенностей водоема. Лимитировать цветение при достаточной концентрации питательных веществ могут низкая температура, недостаточная солнечная радиация, высокие скорости течений, большая глубина, мутность воды и другие экологические факторы. Наиболее сильно эвтрофирование происходит в хорошо прогреваемых и освещаемых прибрежных мелководьях (Гусакова, 2004).
Хозяйственные последствия эвтрофирования. Обильная растительность может препятствовать движению воды и водного транспорта, вода может стать непригодной для питья даже после обработки, рекреационная ценность водоема может снизиться, могут исчезнуть коммерчески важные виды (такие как форель). Наконец, эвтрофирование приводит к вспышкам «цветения» (массового развития) водорослей. Цветение водорослей наносит двоякий ущерб водной системе. Во- первых, оно снижает освещенность, вызывая гибель водных растений. Тем самым нарушаются естественные местообитания многих гидробионтов. Во-вторых, при отмирании водорослей потребляется много кислорода, что может привести к тем же последствиям, что и прямое внесение органики в воду. В 1988, 1989 в восточном Северном море наблюдалась вспышка развития Chrysochromulina sp. в богатых биогенами водах, выносимых Рейном. При этом отмечены массовые заморы рыбы в шведских и норвежских водах.
Кроме обогащения воды легкоокисляемой органикой, приводящей к заморам, водоросли способны продуцировать и токсические вещества (альготоксины). Так, Alexandrium tamarense вырабатывает сакситоксин нервно-паралитического действия, аккумулируемый съедобными моллюсками. Prymnesium parvum выделяет вещества, высокотоксичные для рыб. Токсины, образуемые Microcystis, Aphanizomenon, Anabaena действуют на печень и могут быть нейротоксичны. Например, в 1989 г. при массовом развитии сине-зеленых водорослей в английских озерах погибло несколько собак (Allaby, 2000).
