
- •Ответы к экзамену по математике. 2 семестр.
- •1.Определение производной функции
- •2.Формулы дифференцирования
- •3.Производные тригонометрических функций
- •4.Уравнение касательной к графику функции (геометрический смысл производной)
- •5.Механический смысл производной Механический смысл производной
- •6.Признаки возрастания и убывания функции:
- •7.Экстремумы функций
- •8.Первообразная функции. Основное свойство первообразной
- •9.Три правила вычисления первообразных
- •Правило 1
- •Правило 2
- •Правило 3
- •10 . Неопределенный интеграл. Геометрический смысл неопределенного интеграла.
- •11.Определенный интеграл. Формула Ньютона-Лейбница.
- •12.Аксиомы стереометрии
- •13.Взаимное расположение прямой и плоскости. Признак параллельности прямой и плоскости (с доказательством)
- •14.Взаимное расположение прямых в пространстве. Теоремы о параллельных прямых
- •2) Вычитание векторов.
- •3) Умножение вектора на число.
- •18.Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости (с доказательством)
- •19.Многогранники.Выпуклые и не выпуклые многогранники
- •20.Призма
- •2 1.Параллелепипед и его свойства
- •22.Пирамида.Объем пирамиды. Площадь поверхности пирамиды
- •23.Цилиндр.Площадь поверхности и объем цилиндра
- •24.Конус.Площадь поверхности и объем конуса
- •25.Шар и сфера. Объем шара и площадь сферы
2 1.Параллелепипед и его свойства
Параллелепипед — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них — параллелограмм.
Типы параллелепипедов
:Различается несколько типов параллелепипедов:
Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники;
Прямой параллелепипед — это параллелепипед, у которого 4 боковые грани — прямоугольники;
Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.
Основные элементы:
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства:
Параллелепипед симметричен относительно середины его диагонали.
Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
Противолежащие грани параллелепипеда параллельны и равны.
Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
22.Пирамида.Объем пирамиды. Площадь поверхности пирамиды
П
ирамида
— это многогранник, у которого одна
грань — основание пирамиды — произвольный
многоугольник, а остальные — боковые
грани — треугольники с общей вершиной,
называемой вершиной пирамиды.
Элементы пирамиды:
апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины[4];
боковые грани — треугольники, сходящиеся в вершине пирамиды;
боковые ребра — общие стороны боковых граней;
вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
основание — многоугольник, которому не принадлежит вершина пирамиды.
Cвойства пирамиды::
Боковые ребра пирамиды равны.
Боковые ребра пирамиды одинаково наклонены к основанию пирамиды.
Вершина пирамиды проектируется в центр окружности, описанной около основания пирамиды.
Высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны, а высота пирамиды лежит внутри пирамиды.
Все двугранные углы при основании пирамиды равны.
Вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды.
В правильной треугольной пирамиде противоположные ребра попарно перпендикулярны.
Если боковые ребра пирамиды равны между собой, то в основании лежит правильный многоугольник, вокруг которого можно описать окружность, а вершина пирамиды проецируется в центр этой окружности.
Если двугранные углы при основании пирамиды равны между собой, то в основании пирамиды лежит многоугольник, в который можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Площадь поверхности и объём пирамиды
Пусть
—
высота пирамиды,
—
периметр основания пирамиды,
—
площадь основания пирамиды,
—
площадь боковой поверхности пирамиды,
—
площадь полной поверхности пирамиды,
—
объем пирамиды. Тогда имеют место
следующие соотношения: