Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ К ЭКЗАМЕНУ ПО МАТЕМАТИКЕ.docx
Скачиваний:
40
Добавлен:
01.05.2025
Размер:
874.44 Кб
Скачать

13.Взаимное расположение прямой и плоскости. Признак параллельности прямой и плоскости (с доказательством)

 Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке, см. следующие рисунки. Доказательство признака параллельности прямой и плоскости. Теорема  Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.  Доказательство  Пусть α - плоскость, a – не лежащая в ней прямая и a1 – прямая в плоскости α, параллельная прямой a. Проведем плоскость α1 через прямые a и a1. Плоскости α и α1 пересекаются по прямой a1. Если бы прямая a пересекала плоскость α, то точка пересечения принадлежала бы прямой a1. Но это невозможно, так как прямые a и a1 параллельны. Следовательно, прямая a не пересекает плоскостью α, а значит, параллельна плоскости α. Теорема доказана.

14.Взаимное расположение прямых в пространстве. Теоремы о параллельных прямых

Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой проходит прямая, параллельная данной, и притом только одна.

M a b||а и М b (b - единственная)

рис. 9

15.Взаимное расположение плоскостей в пространстве. Признак параллельности двух плоскостей

Взаимное расположение плоскостей в пространстве. 

16.Понятие вектора на плоскости и в пространстве

17.Действия над векторами.

1) Сложение векторов.

Опр. 6. Суммой двух векторов   и   является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма).

 Рис.1. 

Опр. 7. Суммой трех векторов  ,  ,   называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Опр. 8. Если АВС – произвольные точки, то   +   =   (правило треугольника).

 

 рис.2 

2) Вычитание векторов.

Опр. 9. Под разностью векторов   и  понимают вектор   =   –   такой, что   +   =  .

В параллелограмме – это другая диагональ СД (см.рис.1).

3) Умножение вектора на число.

Опр. 10. Произведением вектора    на скаляр k называется вектор

 = k  =  k,

имеющий длину ka, и направление, которого:

1.     совпадает с направлением вектора  , если k > 0;

2.     противоположно направлению вектора  , если k < 0;

3.     произвольно, если k = 0.

18.Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости (с доказательством)

Определение Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна каждой прямой, которая лежит в данной плоскости и проходит через точку пересечения.

ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.  Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.

Доказательство: Пусть а прямая, перпендикулярная прямым b и c в плоскости  . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости  . Проведем произвольную прямую х через точку А в плоскости   и покажем, что она перпендикулярна прямой а. Проведем в плоскости  произвольную прямую, не проходящую через точку А и пересекающую прямые bc и х. Пусть точками пересечения будут ВС и Х. Отложим на прямой а от точки А в разные стороны равные отрезки АА1 иАА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам. Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХи А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости  . Теорема доказана.