
- •Ответы к экзамену по математике. 2 семестр.
- •1.Определение производной функции
- •2.Формулы дифференцирования
- •3.Производные тригонометрических функций
- •4.Уравнение касательной к графику функции (геометрический смысл производной)
- •5.Механический смысл производной Механический смысл производной
- •6.Признаки возрастания и убывания функции:
- •7.Экстремумы функций
- •8.Первообразная функции. Основное свойство первообразной
- •9.Три правила вычисления первообразных
- •Правило 1
- •Правило 2
- •Правило 3
- •10 . Неопределенный интеграл. Геометрический смысл неопределенного интеграла.
- •11.Определенный интеграл. Формула Ньютона-Лейбница.
- •12.Аксиомы стереометрии
- •13.Взаимное расположение прямой и плоскости. Признак параллельности прямой и плоскости (с доказательством)
- •14.Взаимное расположение прямых в пространстве. Теоремы о параллельных прямых
- •2) Вычитание векторов.
- •3) Умножение вектора на число.
- •18.Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости (с доказательством)
- •19.Многогранники.Выпуклые и не выпуклые многогранники
- •20.Призма
- •2 1.Параллелепипед и его свойства
- •22.Пирамида.Объем пирамиды. Площадь поверхности пирамиды
- •23.Цилиндр.Площадь поверхности и объем цилиндра
- •24.Конус.Площадь поверхности и объем конуса
- •25.Шар и сфера. Объем шара и площадь сферы
9.Три правила вычисления первообразных
Существует три основных правила нахождения первообразных функций. Они очень похожи на соответствующие правила дифференцирования.
Правило 1
Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.
По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:
(F + G)’ = F’ + G’ = f + g.
Правило 2
Если F есть первообразная для некоторой функции f, а k – некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.
Имеем: (k*F)’ = k*F’ = k*f.
Правило 3
Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).
Данное правило следует из правила вычисления производной сложной функции:
((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).
10 . Неопределенный интеграл. Геометрический смысл неопределенного интеграла.
11.Определенный интеграл. Формула Ньютона-Лейбница.
Формула Ньютона — Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием определённого интеграла и вычислением первообразной.
-
Если
непрерывна на отрезке
и
— её любая первообразная на этом отрезке, то имеет место равенство
Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Определение:
Пусть
определена
на
.
Разобьём
на
части с несколькими произвольными
точками
.
Тогда говорят, что произведено
разбиение
отрезка
Далее
выберем произвольную точку
,
,
Определённым
интегралом от функции
на
отрезке
называется
предел интегральных сумм при стремлении
ранга разбиения к нулю
,
если он существует независимо от
разбиения
и
выбора точек
,
то есть
Если существует указанный предел, то функция называется интегрируемой на по Риману.
Обозначение:
— нижний предел.
— верхний предел.
— подынтегральная функция.
— длина частичного отрезка.
— интегральная сумма от функции на соответствующей разбиению .
— максимальная длина част. отрезка.
Свойства:
Если функция интегрируема по Риману на , то она ограничена на нем.
12.Аксиомы стереометрии
А к с и о м а 1.Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
А к с и о м а 2.Если две точки прямой лежат в плоскости, то все точки данной прямой лежат в этой плоскости.В этом случае говорят, что прямая лежит в плоскости или что плоскость проходит через прямую.Из аксиомы 2 следует, что прямая, не лежащая в плоскости, не может иметь с плоскостью более одной общей точки. Если прямая и плоскость имеют только одну общую точку, то говорят, что прямая пересекает плоскость.
А к с и о м а 3.Если две плоскости имеют общую точку, то они имеют общую прямую, которой принадлежат все общие точки этих плоскостей.В этом случае говорят, что плоскости пересекаются по прямой.
А к с и о м а 4.В любой плоскости пространства выполняются все аксиомы планиметрии.Таким образом, в любой плоскости пространства можно использовать все доказанные теоремы и формулы из планиметрии.