- •Диаграмма состояния железо-углерод. Структуры и фазы в системе Fe-c. Влияние углерода и примесей на свойства стали.
- •Типичные полимеры. Классификация полимеров: эластомеры (резины), термореактивные пластмассы (реактопласты), термопластичные пластмассы (термопласты).
- •Деформируемые алюминиевые сплавы, их состав, методы упрочнения.
- •Критические точки железа и стали в диаграмме Fe-c. Явление полиморфизма. Влияние легирующих элементов на критические точки а3, а4.
- •Улучшение и нормализация. Режимы. Получаемые структуры и свойства.
- •Алюминиевые сплавы. Их классификация, маркировка, структура и применение.
- •Роль наполнителей, пластификаторов, стабилизаторов, замедлителей горения в полимерах. Получаемые структуры и свойства.
- •Влияние пластической деформации на свойства сталей. Явление наклепа. Механизмы пластической деформации.
- •Титан и сплавы на основе титана. Влияние легирующих элементов на структуру в равновесном состоянии. Применяемые методы упрочнения. Достоинства и недостатки титановых сплавов.
- •На диаграмму железо-углерод нанести температуры нагрева до- и заэвтектоидных сталей под закалку, отжиг, нормализацию. Назначение каждого из этих процессов. Получаемые структура и свойства.
- •Нержавеющие стали аустенитного класса. Назначение легирующих элементов. Марки. Режим термической обработки. Причины интеркристаллитной коррозии и способы ее устранения.
- •Медь и ее сплавы. Состав, структура, маркировка. Свойства и применение медных сплавов.
- •Закалка и отпуск конструкционных сталей. Назначение, получаемые структуры и свойства.
- •Перечислите методы, которыми могут быть изменены свойства полимерных материалов. Применение этих материалов.
- •Деформируемые алюминиевые сплавы, упрочняемые термообработкой. Их состав, свойства, механизмы упрочнения. Явление возврата. Применение.
- •Выбрать сталь и назначить термическую обработку для нагруженной шестерни заднего моста и для ненагруженной шестерни масляного насоса. Обоснуйте свой выбор.
- •Испытание на удар. Ударная вязкость и порог хладноломкости. Влияние основных факторов на эти характеристики.
- •Диаграмма изотермического распада аустенита для доэвтектоидных, эвтектоидных и заэвтектоидных сталей. Продукты распада переохлажденного аустенита и их свойства.
- •Цементация стали. Назначение процесса. Стали для цементации. Применяемая термическая обработка, получаемые структура и свойства.
- •Требования предявляемые к клеям, классификация клеев, свойства клеевых соединений деталей.
- •Мартенситное превращение и его особенности. Строение и свойства мартенсита. Влияние углерода и легирующих элементов на температуру Мн и Мк.
- •Виды и назначение отпуска. Фазовые и структурные превращения, протекающие при отпуске.
- •Сплавы на основе меди. Маркировка, свойства, назначение.
- •Синтетические высокомолекулярные вещества. Свойства и применение. Принципиальное отличие полимеров от любых металлов.
- •Зерно аустенита в стали. Начальное, наследственное и действительное зерно. Перегрев и пережог.
- •Отпуск стали. Процессы, протекающие при отпуске. Структуры отпуска и их свойства. Влияние легирующих элементов на превращения при отпуске стали. Отпускная хрупкость и способы ее устранения.
- •Типы кристаллических решеток металлов и их основные характеристики.
- •Закалка стали. Выбор температуры нагрева (указать на диаграмме железо-углерод). Способы охлаждения при закалке. Сравните структуру и свойства сталей после ступенчатой и изотермической закалок.
- •Диаграмма состояния Аl–Cu. Классификация алюминиевых сплавов. Маркировка. Механизмы упрочнения.
- •Первичная и собирательная рекристаллизация. Влияние их на структуру и свойства стали. Понятие о критической степени деформации.
- •Особенности превращения аустенита в перлит и бейнит. Строение и свойства продуктов превращений.
- •Закалка стали. Методы закалки. Достоинства и недостатки каждого метода. Температура закалки для до- и заэвтектоидных сталей. Показать на диаграмме Fe-c.
- •Основными легирующими элементами в титановых сплавах. Применение титановых сплавов.
- •Диаграмма состояния Fe-с. Фазы и структуры на диаграмме. Виды сталей и чугунов на диаграмме.
- •Цементация стали. Стали для цементации. Назначение и режимы цементации. Термическая обработка после цементации. Строение и свойства цементованного слоя. Применяемые стали.
- •Стали для штампов горячего и холодного деформирования. Их состав, марки, термообработка, структура, свойства, применение.
- •Дефекты кристаллического строения и их влияние на свойства.
- •Виды и назначение отпуска и отжига. Фазовые и структурные превращения при этих видах термообработки.
- •Алюминиевые сплавы, упрочняемые термической обработкой. Их состав, термическая обработка, структура и свойства. Области применения.
- •Подшипниковые сплавы. Применение в автомобильных деталях.
- •Нанести на диаграмму изотермического превращения аустенита все методы закалки. Достоинства и недостатки каждого из них. Закалочные среды и требования к ним.
- •Нержавеющие хромоникелевые стали. Назначение легирующих элементов в данных сталях. Термическая обработка, получаемая структура. Межкристаллитная коррозия и способы ее предотвращения.
- •Для изготовления шестерен коробок передач выбрана сталь 25хгт. Определить ее состав, и назначить необходимую термическую обработку. Описать структуру после термообработки.
- •Нормализация стали. Назначение процесса, получаемые структуры. Классы сталей после нормализации.
- •Выбрать марку стали для изготовления рессор. Расшифровать ее. Указать режим термической обработки, получаемую структуру и свойства. Обосновать необходимость сквозной прокаливаемости.
- •Закалка стали. Назначение процесса. Получаемые структура и свойства. Способы закалки. Достоинства и недостатки каждого из них.
Требования предявляемые к клеям, классификация клеев, свойства клеевых соединений деталей.
ОТВЕТ. Требования, предъявляемые к клеям: высокая адгезия к поверхности обеих склеиваемых материалов и высокая когезия частиц самого клея; эластичность и механическая прочность; коррозионная неактивность; нетоксичность; сопротивление старению; хорошие электроизоляционные свойства; трибостойкость; водостойкость и атмосферостойкость; маслостойкость и бензостойкость; большая жизнеспособность и длительный срок храпения; технологичность (склеивание при невысоких температурах, малых давлениях и в короткие сроки); способность обеспечивать герметичность соединения.
Рис. 9.17. Конструкции клеевых соединений
Состав клеев:
пленкообразующие — основа клееного слоя (термореактивные и термопластичные смолы, каучуки и эфиры целлюлозы);
растворители — для получения клея определенной вязкости (органические растворители и мономерные вещества);
отвердители — для получения твердой нерастворимой термостабильной пленки (перекись бензола, гексаметилендиамин, керосиновый контакт и др.);
наполнители — для уменьшения усадки клеевой пленки и повышения теплостойкости (цемент, алюминиевая пудра, графит и др.);
пластификаторы — для повышения эластичности пленки (дпбутнл-фталзт и др.);
стабилизаторы — для сохранения консистенции клеев или их клеящих свойств.
Классификация клеев. Клеи классифицируют по пленкообразующим, типу отверждения и по состоянию.
По составу пленкообразующих принято различать клеи на основе:
термопластичных смол (полиметилметакриловые, полпетирольпые, перхлорвипиловые и др.);
термореактнвных смол (фенолыюформальдегидпые, эпоксидные, кремнийорганнческие и др.);
каучуков (натуральных, нитрильных и др.);
эфиром целлюлозы (нитроцеллюлозные и др.).
По типу отверждения различают клеи холодного (88Н, ВИАМБЗ, К-153 и др.) и горячего (БФ, ВК-32-200 и др.) отверждения;
По состоянию различают:
жидкие клеи: растворы пленкообразующих (на основе фенольно-формальдегидных, перхлорвиниловых и других смол);
расплавы пленкообразующих (на основе полиэпоксидных, полиэфирных и других смол);
частично полимеризованные мономеры (мономер полиметилметакрилата, карбинольный сироп и др.);
твердые, клеи: твердые клеящие бруски и порошки (эпоксиды);
клеящие ленты или пленочные клеи (ленты на основе клеев БФ, ВK-32-200 и др.);
липкие ленты и плёнки (на основе полиизобутеленов, полистирола и т. д.).
Наибольшее распространение имеют клеи на основе смол.
Клеи на основе термопластичных смол. Термопластичные смолы представляют собой полимеры с линейной (или разветвленной) структурой молекул. При нагревании они размягчаются. Большинство из них легко растворяется (полистирол, органическое стекло и др.).
Клеи па основе этих смол применяют в виде растворов последних в органических растворителях или в мономерах, и виде начальных продуктов полимеризации, а также в виде клеящих лент и пленок.
Недостатки. Клеевое соединение на основе термопластичных смол при нагревании расклеивается, т. е. является обратимым.
Особенностью клеевых пленок па основе термопластичных смол является то, что, обладая хорошей эластичностью, они имеют относительно невысокую теплостойкость и механическую прочность.
Клеи на основе термопластичных смол применяют главным образом для склеивания неметаллических материалов несилового назначения. Для склеивания металлических изделий, а также пластмасс и резин применяют клеи на основе модифицированных термопластичных смол (клеи МПФ-1, карбинольный и др.).
Клеи на основе термореактивных смол. Термореактивные смолы — такие полимеры, которые в начальной стадии, имея линейную структуру молекул, при нагревании размягчаются и в растворителях растворяются.
При дальнейшем нагревании, облучении или в присутствии отвердителей при комнатной или повышенной температурах происходит изменение структуры их молекул. Из линейной молекулы переходят в пространственно-сетчатую, благодаря чему смолы переходит и неплавкие нерастворимые конечные продукты. Эти смолы обладающие хорошей теплостойкостью и повышенной химической стойкостью; однако одновременно повышается хрупкость.
Для получения клеев термореактивные смолы используют в начальной стадии, когда структура молекул линейная. Эти клеи существуют в виде растворов линейных полимеров в органических растворителях или мономерах; без растворителей, в виде расплава линейных полимеров с отвердителями; в виде мономерных соединений с отвердителями; а также в виде клеящих лент, брусков и порошков.
Перевод клеевых пленок в неплавкое нерастворимое состояние осуществляется под давлением при нагреве или в присутствии отвердителей при нормальной (или повышенной) температуре в течение определенного времени.
Клеевое соединение на основе термореактивных смол является необратимым и обладает повышенной теплоемкостью, химической стойкостью, влагостойкостью, атмосферостойкостыо, прочностью. Эти клеи применяют для склейки металлов, термореактивных пластмасс, силикатных стекол, керамики и других материалов.
Механические свойства клеевых соединений, получаемых при помощи клеев холодного отверждения, ниже (в особенности при повышенной температуре и влажности), чем в случае применения клеев горячего отверждения.
На практике чаще всего применяют клеи на основе модифицированных смол, так как модифицирование улучшает их свойства. Модифицирование их бутваром уменьшает хрупкость, сохраняя положительные качества.
Наполнители (порошок графита, алюминиевую пудру, цемент и т. д). вводят в клей для уменьшения усадки, которая вызывает внутренние напряжения и снижает прочность клеевого соединения. При склеивании материалом с различным коэффициентом линейного расширения (металлы с неметаллами) также возникают внутренние напряжения, снижающие прочность соединения. В этом случае для прочного клеевого соединения необходимо использовать клеи на основе полиэпоксидных, полиэфирных смол, клеи без растворителей, а также клеи, дающие эластичные пленки.
