
- •Предмет и функции философии науки.
- •2. Наука и ее место в культуре. Функции науки в жизни общества: наука как мировоззрение, производительная и социальная сила.
- •3. Роль науки в современном образовании и формировании личности.
- •Генезис философии и формирование научного мышления.
- •5. Позитивистская и постпозитивистская парадигмы (традиции) в философии науки.
- •(Релятивистское течение. Кун: «нормальная» и «экстраординарная» науки)
- •П. Фейерабенд: критический плюрализм
- •Позитивистская традиция в философии науки. Верифицируемость как критерий научного знания
- •7. Концепция роста научного знания к. Поппера. Фальсифицируемость как критерий демаркации науки.
- •8. Модель развития науки т. Куна
- •9. Методология научно-исследовательских программ и. Лакатоса (1922-1974).
- •10. Концепция методологического анархизма п. Фейерабенда.
- •Социологическая и культурологическая парадигмы (традиции) в философии науки.
- •Функции (ценность) науки в составе традиционалистского и техногенного типов цивилизации.
- •13. Понятие научной рациональности и ее ценность.
- •Природа научного знания и его основные характеристики. Классический и современный идеалы научности.
- •Структурное многообразие науки: уровни, формы, дисциплины.
- •16. Научное и вненаучное знание.
- •18. Наука и ценностные виды познания (искусство, религия). Наука и обыденное познание.
- •19. Возникновение науки и основные стадии ее исторической эволюции.
- •Преднаука и наука: обобщение практического опыта и конструирование теоретических моделей как две стратегии порождении знаний. Преднаука Древнего Востока.
- •Рождение греческой науки: от мифа к логосу. Становление первых научных программ.
- •22. Математическая программа Пифагора и Платона
- •23. Атомистическая программа Левкиппа и Демокрита.
- •24. Научная программа Аристотеля.
- •Научные знания в Средние века. Манипуляция с природными объектами – алхимия, астрология, магия. Формирование идеалов математизированного и опытного знания (оксфодская школа, р. Бэкон, у.Оккам).
- •26. Научная революция XVI-XVII веков: основное содержание. Предпосылки возникновения экспериментального метода и его соединения с математическим описанием природы ( г.Галилей, ф. Бэкон, р.Декарт).
- •Основные научные программы в новоевропейской науке XVII – XVIII вв. (Программы атомистов, Лейбница).
- •Лейбниц
- •29. Формирование науки как профессиональной деятельности. Возникновение дисциплинарно организованной науки. Технологическое применение науки. Формирование технических наук.
- •30. Становление социальных и гуманитарных наук: содержание, социокультурные и мировоззренческие основания.
- •31. Многообразие типов научного знания. Критерии научности.
- •32. Особенности и структура эмпирического знания.
- •33. Особенности и структура теоретического знания. Методы и формы познания теоретического уровня.
- •Методы теоретического познания
- •35. Основные познавательные функции науки: научное описание, объяснение, понимание, научное предсказание.
- •36. Основания науки: сущность, виды, значение в системе науки.
- •37. Идеалы и нормы научного исследования: сущность, виды, функции в системе науки.
- •39. Философские основания науки.
- •40 Модели развития науки (экстернализм, интернализм, кумулятивизм, революционизм).
- •41 Научные традиции и научные революции. Глобальные научные революции и смена типов научной рациональности.
- •42 Специфика современной, постнеклассической науки.
- •43 Динамика науки как процесс порождения нового знания.
- •44 Общие закономерности развития науки
- •45 Этические проблемы науки, их специфика на рубеже 20-21 вв.
- •46 Экологические проблемы техногенной цивилизации и возможности современной науки в их решении.
- •47 Синергетическая парадигма в современной науке.
- •49 Наука как социальный институт
- •50 Наука и экономика. Наука и власть. Проблемы государственного регулирования науки.
- •38. Научная картина мира.
8. Модель развития науки т. Куна
Важнейшим понятием концепции Куна является понятие парадигмы. Парадигма есть совокупность научных достижений, признаваемых всем научным сообществом в определенный период времени.
Конкретизируя свое представление о парадигме, он вводит понятие о дисциплинарной матрице, в состав которой включает следующие четыре элемента:
1. Символические обобщения типа второго закона Ньютона, закона Ома, закона Джоуля-Ленца и т.д.
2. Концептуальные модели, примерами которых могут служить общие утверждения такого типа: "Теплота представляет собой кинетическую энергию частей, составляюших тело" или "Все воспринимаемые нами явления существуют благодаря взаимодействию в пустоте качественно однородных атомов".
3. Ценностные установки, принятые в научном сообществе и проявляющие себя при выборе направлений исследования, при оценке полученных результатов и состояния науки в целом.
4. Образцы решений конкретных задач и проблем, с которыми неизбежно сталкивается уже студент в процессе обучения. Этому элементу дисциплинарной матрицы Кун придает особое значение, и в следующем параграфе мы остановимся на этом более подробно.
Парадигма дает набор образцов научного исследования - в этом заключается ее важнейшая функция.
Задавая определенное видение мира, парадигма очерчивает круг проблем, имеющих смысл и решение: все, что не попадает в этот круг, не заслуживает рассмотрения с точки зрения сторонников парадигмы.
Науку, развивающуюся в рамках современной парадигмы, Кун называет "нормальной". Кун убежден, что в реальной научной практике ученые почти никогда не сомневаются в истинности основоположений своих теорий и даже не ставят вопроса об их проверке.
Парадигма гарантирует, что решение существует, и она же задает допустимые методы и средства получения этого решения.
До тех пор пока решение головоломок протекает успешно, парадигма выступает как надежный инструмент познания. Увеличивается количество установленных фактов, повышается точность измерений, открываются новые законы, растет дедуктивная связность парадигмы, короче говоря, происходит накопление знания. Но может оказаться, что некоторые задачи-головоломки так и не поддаются решению. Сначала на это не обращают внимания. Реально же ученые всегда надеются на то, что со временем противоречие будет устранено и головоломка решена. Но однажды может быть осознано, что средствами существующей парадигмы проблема не может быть решена - аномалия.
Разработка самой парадигмы приводит к росту числа аномалий. Доверие к парадигме падает. Наступает состояние, которое Кун называет кризисом. Научное сообщество распадается на несколько групп, одни из которых продолжают верить в парадигму, другие выдвигают гипотезы, претендующие на роль новой парадигмы. Нормальное исследование замирает. Только в этот период кризиса ученые ставят эксперименты, направленные на проверку и отсев конкурирующих гипотез и теорий.
Период кризиса заканчивается, когда одна из предложенных гипотез доказывает свою способность справиться с существующими проблемами. Вот эту смену парадигм Кун и называет научной революцией.
Ученые, принявшие новую парадигму, начинают видеть мир по-новому. Сторонники разных парадигм говорят на разных языках и живут в разных мирах, они теряют возможность общаться друг с другом.
Развитие науки - нормальная наука, развивающаяся в рамках общепризнанной парадигмы; следовательно, рост числа аномалий, приводящий в конечном итоге к кризису; следовательно, научная революция, означающая смену парадигм. В целом развитие науки получается дискретным: периоды прогресса и накопления знания разделяются революционными провалами, разрывами ткани науки.