
- •Лекция 2
- •Лекция 3
- •Лекция 4
- •Лекция 5
- •Лекция 13
- •Лекция 14
- •Лекция 16
- •Основные понятия
- •Понятие множества. Способы задания множеств.
- •Понятие множества. Способы задания множеств.
- •Отношения между множествами.
- •3, Операции над множествами.
- •Алгебра множеств.
- •Теорема о количестве подмножеств конечного множества.
- •Формула включений и исключений.
- •Лекция 2
- •1.Понятие вектора. Прямое произведение множеств.
- •2.Теорема о количестве элементов прямого произведения.
- •Понятие вектора. Прямое произведение множеств.
- •Теорема о количестве элементов прямого произведения.
- •Лекция 3
- •2. Понятие высказывания.
- •3. Логические операции над высказываниями
- •4.Формулы алгебры логики.
- •Лекция 4
- •2. Важнейшие равносильности алгебры логики.
- •3.Равносильные преобразования формул.
- •Задачи для самостоятельного решения
- •Лекция 5
- •Дизъюнктивная нормальная форма.
- •Конъюнктивная нормальная форма.
- •Проблема разрешимости.
- •Лекция 6
- •Функции алгебры логики.
- •3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- •4.Приложения алгебры логики в технике (релейно-контактные схемы).
- •Контрольные вопросы
- •Лекция 7
- •Совершенная дизъюнктивная нормальная форма.
- •Совершенная конъюнктивная нормальная форма.
- •Совершенная дизъюнктивная нормальная форма.
- •2.Совершенная конъюнктивная нормальная форма.
- •Лекция 8
- •2.Понятие минимальной днф. Метод минимизирующих карт.
- •3.Метод Квайна.
- •4.Метод Карно.
- •5.Постановка задачи минимизации в геометрической форме.
- •6.Сокращенная днф.
- •7.Тупиковая днф. Днф Квайна.
- •Лекция 9
- •Некоторые логические операции. Двоичное сложение.
- •Полином Жегалкина.
- •Некоторые логические операции. Двоичное сложение.
- •Полином Жегалкина.
- •Лекция 10
- •Полная система . Достаточное условие полноты.
- •Критерий полноты системы булевых функций.
- •Независимые системы. Базис замкнутого класса.
- •Полная система. Достаточное условие полноты.
- •Критерий полноты системы булевых функций.
- •3. Независимые системы. Базис замкнутого класса.
- •Лекция 11
- •Понятие предиката.
- •Логические операции над предикатами.
- •1. Понятие предиката
- •2. Логические операции над предикатами
- •Лекция 12
- •2. Формулы логики предикатов.
- •Значение формулы логики предикатов.
- •4. Равносильные формулы логики предикатов.
- •Лекция 13
- •Построение противоположных утверждений.
- •3. Прямая, обратная и противоположная теоремы.
- •4. Необходимые и достаточные условия.
- •5. Доказательство методом от противного.
- •Задачи для самостоятельного решения
- •Лекция 14
- •2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- •3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- •4. Обобщение метода математической индукции
- •Контрольные вопросы
- •Лекция 15
- •Операции над бинарными отношениями.
- •3. Свойства бинарных отношений.
- •4. Специальные бинарные отношения.
- •Контрольные вопросы
- •Лекция 16
- •Функция
- •1. 4. Отображение
- •Обратная функция
- •2. Свойства отображений и функций
- •3.Операции над функциями. Свойства операций
- •Контрольные вопросы
- •Лекция 17
- •Основные понятия .
- •2. Смежность, инцидентность, степени вершин.
- •3. Способы задания графов
- •Маршруты в неориентированном графе
- •Операции над графами.
- •Связность. Компоненты связности
- •Контрольные вопросы
- •Лекция 18
- •2. Метрические характеристики неориентированного графа
- •Минимальные маршруты в нагруженных графах
- •Задачи на деревьях
- •Цикловой ранг графа. Цикломатическое число
- •Контрольные вопросы
- •Лекция 19
- •Эйлеровы цепи и циклы
- •Гамильтоновы циклы и цепи
- •Эйлеровы цепи и циклы
- •Гамильтоновы циклы и цепи.
- •Контрольные вопросы
- •Лекция 20
- •Двудольный граф. Условие существования двудольного графа
- •Паросочетания . Реберные покрытия
- •Двудольный граф. Условие существования двудольного графа
- •Паросочетания. Реберные покрытия
- •Контрольные вопросы
- •Лекция 21
- •Основные определения
- •Алгоритм плоской укладки графа
- •Контрольные вопросы
- •Лекция 22
- •Способы задания ориентированного графа
- •Путь в ориентированном графе
- •4. Связность. Компоненты связности в орграфе
- •Контрольные вопросы
- •Лекция 23
- •2. Минимальные пути в нагруженных орграфах
- •3. Порядковая функция орграфа без контуров
- •Контрольные вопросы
Цикловой ранг графа. Цикломатическое число
Если G(V, X) не является ациклическим графом, то в нем можно выделить цикл.
Независимыми называются циклы графа G, если они отличаются хотя бы одним ребром.
Множество всех независимых простых циклов, которые можно выделить в мультиграфе составляют цикловой базис графа.
Количество простых циклов в базисе называется цикломатическим числом или циклическим рангом графа G.
Обзначим цикломатическое число через (G).
Справедливо утверждение:
Если G(V, X) – связный граф, то (G) = m(G) – n(G) + p(G), где m(G) – количество ребер в графе, n(G) – количество вершин в графе, p(G) – количество компонент связности в графе.
Так, например, для дерева не существует цикловой базис, т.к. в дереве m = n – 1, р = 1(дерево – связный граф). Тогда цикломатическое число равно (G) = n – 1 – n +1 = 0. Следовательно в базисе нет ни одного цикла.
Рассмотрим алгоритм нахождения циклового базиса связного мультиграфа.
Если (G) = 0, то граф ациклический, циклового базиса не существует.
Пусть (G) > 0. Выделим в G любое остовное дерево Т. Пусть число вершин в графе G равно n, а число ребер – m. x1, x2,…, xn-1 – ребра в Т (остовное дерево содержит все вершины графа, а по свойству дерева число ребер на 1 меньше числа вершин), xn, xn+1,…, xm – остальные ребра графа G (заметим, что n 2, m n). Число последних ребер m – (n – 1) = m – n + 1, и совпадает с цикломатическим числом связного графа. Добавляя любое из ребер xi ( i = n, …, m) , к дереву Т, получаем некоторый подграф графа G, из которого выделяем простой цикл i-(n-1) , проходящий через ребро xi . Действуя таким образом, находим совокупность простых циклов {1, m-n+1}. Т.к. в каждом из циклов этой системы имеется ребро, не содержащееся в других циклах, то полученная система независимая, следовательно, является цикловым базисом графа G.
Используя данный алгоритм, определим цикловой базис мультиграфа, представленного на рисунке:
Вычислим цикломатическое число: n =4, m = 8, p =1, следовательно, (G) = 8 - 4 + 1 = 5. Значит, цикловой базис содержит 5 независимых циклов. Построим остовное дерево:
Добавим по одному удаленные из графа ребра и будем, таким образом, получать простые циклы:
Добавим ребро х3, получим цикл v1 x2 x3 x5 v1.
Добавим ребро x6 , выделим простой цикл: v1 x2 x3 x6 v1.
Добавим ребро x7 , выделим простой цикл: v1 x2 x7 x1 v1.
Добавим ребро x8 , выделим простой цикл: v1 x2 x8 x1 v1.
Добавим ребро x4 , выделим простой цикл: v1 x2 x3 x4 х1 v1.
Получили пять циклов, составляющих цикловой базис графа.
Контрольные вопросы
Какой маршрут называется минимальным?
Алгоритм выделения минимального маршрута в ненагруженном неорграфе.
Алгоритм выделения минимального маршрута в нагруженном графе.
Какой граф называется ациклическим? Какой подграф называется остовом? Алгоритм его построения.
Что называется цикловым рангом графа? Что такое цикломатическое число, цикловой базис графа? Алгоритм построения циклового базиса графа.