
- •Часть I
- •Глава 1 представляет собой введение в криптографию, описывает множество терминов, в ней кратко рассматривается докомпьютерная криптография.
- •1.1 Терминология
- •1.2 Стеганография
- •1.3 Подстановочные и перестановочные шифры
- •1.4 Простое xor
- •1.5 Одноразовые блокноты
- •1.6 Компьютерные алгоритмы
- •1.7 Большие числа
- •Часть I криптографические протоколы
- •2 Элементы протоколов
- •2.1 Введение в протоколы
- •2.2 Передача информации с использованием симметричной криптографии
- •2.3 Однонаправленные функции
- •2.4 Однонаправленные хэш‑функции
- •2.5 Передача информации с использованием криптографии с открытыми ключами
- •2.6 Цифровые подписи
- •2.7 Цифровые подписи и шифрование
- •2.8. Генерация случайных и псевдослучайных последовательностей
- •3 Основные протоколы
- •3.1 Обмен ключами
- •3.2 Удостоверение подлинности
- •3.3 Удостоверение подлинности и обмен ключами
- •3.4 Формальный анализ протоколов проверки подлинности и обмена ключами
- •3.5 Криптография с несколькими открытыми ключами
- •3.6 Разделение секрета
- •3.7 Совместное использование секрета
- •3.8 Криптографическая защита баз данных
- •4 Промежуточные протоколы
- •4.1 Службы меток времени
- •4.2 Подсознательный канал
- •4.3 Неотрицаемые цифровые подписи
- •4.4 Подписи уполномоченного свидетеля
- •4.5 Подписи по доверенности
- •4.6 Групповые подписи
- •4.7 Подписи с обнаружением подделки
- •4.8 Вычисления с зашифрованными данными
- •4.9 Вручение битов
- •4.10 Подбрасывание "честной" монеты
- •4.11 Мысленный покер
- •4.12 Однонаправленные сумматоры
- •4.13 Раскрытие секретов "все или ничего"
- •4.14 Условное вручение ключей
- •5 Развитые протоколы
- •5.1 Доказательства с нулевым знанием
- •5.2 Использование доказательства с нулевым знанием для идентификации
- •5.3 Слепые подписи
- •5.4 Личностная криптография с открытыми ключами
- •5.5 Рассеянная передача
- •5.6 Рассеянные подписи
- •5.7 Одновременная подпись контракта
- •5.8 Электронная почта с подтверждением
- •5.9 Одновременный обмен секретами
- •6 Эзотерические протоколы
- •6.1 Безопасные выборы
- •6.2 Безопасные вычисления с несколькими участниками
- •6.3 Анонимная широковещательная передача сообщений
- •6.4 Электронные наличные
- •Часть II Криптографические методы
- •7 Длина ключа
- •7.1 Длина симметричного ключа
- •7.2 Длина открытого ключа
- •Табл-4. Разложение на множителя с помощью "квадратичного решета"
- •7.3 Сравнение длин симметричных и открытых ключей
- •7.4 Вскрытие в день рождения против однонаправленных хэш-функций
- •7.5 Каков должны быть длина ключа?
- •8 Управление ключами
- •8.1 Генерация ключей
- •Табл-1. Количество возможных ключей в различных пространствах ключей
- •8.2 Нелинейные пространства ключей
- •8.3 Передача ключей
- •8.4 Проверка ключей
- •8.5 Использование ключей
- •8.6 Обновление ключей
- •8.7 Хранение ключей
- •8.8 Резервные ключи
- •8.9 Скомпрометированные ключи
- •8.10 Время жизни ключей
- •8.11 Разрушение ключей
- •8.12 Управление открытыми ключами
- •9 Типы алгоритмов и криптографические режимы
- •9.1 Режим электронной шифровальной книги
- •9.2 Повтор блока
- •9.3 Режим сцепления блоков шифра
- •9.4 Потоковые шифры
- •9.5 Самосинхронизирующиеся потоковые шифры
- •9.6 Режим обратной связи по шифру
- •9.7 Синхронные потоковые шифры
- •9.8 Режим выходной обратной связи
- •9.9 Режим счетчика
- •9.10 Другие режимы блочных шифров
- •9.11 Выбор режима шифра
- •9.12 Чередование
- •9.13 Блочные шифры против потоковых
- •10 Использование алгоритмов
- •10.1 Выбор алгоритма '
- •10.2 Криптография с открытыми ключами против симметричной криптографии
- •10.3 Шифрование каналов связи
- •10.4 Шифрование данных для хранения
- •10.5 Аппаратный и программный способы шифрования
- •10.6 Сжатие, кодирование и шифрование
- •10.7 Обнаружение шифрования
- •10.8 Как прятать шифротекст в шифротексте
- •10.9 Разрушение информации
- •Часть III Криптографические алгоритмы Математические основы Теория информации
- •Энтропия и неопределенность
- •Норма языка
- •Безопасность криптосистемы
- •Практическое использование теории информации
- •Путаница и диффузия
- •Теория сложности
- •Сложность алгоритмов
- •Сложность проблем
- •Теория чисел
- •Арифметика вычетов
- •Простые числа
- •Наибольший общий делитель
- •Обратные значения по модулю
- •Решение для коэффициентов
- •Малая теорема Ферма
- •Функция Эйлера
- •Китайская теорема об остатках
- •Квадратичные вычеты
- •Символ Лежандра
- •Символ Якоби
- •Целые числа Блюма
- •Генераторы
- •Вычисление в поле Галуа
- •Разложение на множители
- •Квадратные корни по модулю n
- •Генерация простого числа
- •Практические соображения
- •Сильные простые числа
- •Дискретные логарифмы в конечном поле
- •Вычисление дискретных логарифмов в конечной группе
- •Стандарт шифрования данных des (Data Encryption Standard) Введение
- •Разработка стандарта
- •Принятие стандарта
- •Проверка и сертификация оборудования des
- •Описание des
- •Начальная перестановка
- •Преобразования ключа
- •Перестановка с расширением
- •Подстановка с помощью s-блоков
- •Перестановка с помощью p-блоков
- •Заключительная перестановка
- •Дешифрирование des
- •Режимы des
- •Аппаратные и программные реализации des
- •Безопасность des
- •Слабые ключи
- •Ключи-дополнения
- •Алгебраическая структура
- •Длина ключа
- •Количество этапов
- •Проектирование s-блоков
- •Дополнительные результаты
- •Дифференциальный и линейный криптоанализ Дифференциальный криптоанализ
- •Криптоанализ со связанными ключами
- •Линейный криптоанализ
- •Дальнейшие направления
- •Реальные критерии проектирования
- •Варианты des Многократный des
- •Des с независимыми подключами
- •Обобщенный des
- •Des с измененными s-блоками
- •Насколько безопасен сегодня des?
- •Другие блочные шифры
- •Описание Madryga
- •Криптоанализ и Madryga
- •Описание feal
- •Криптоанализ feal
- •Патенты
- •Патенты и лицензии
- •Описание loki91
- •Криптоанализ loki91
- •Патенты и лицензии
- •Патенты
- •Обзор idea
- •Описание idea
- •Скорость idea
- •Криптоанализ idea
- •Режимы работы и варианты idea
- •Патенты и лицензии
- •Безопасность mmb
- •И еще о блочных шифрах гост
- •Описание гост
- •Криптоанализ гост
- •Описание Blowfish
- •Безопасность Blowfish
- •Описание safer k-64
- •Безопасность safer k-64
- •Описание s-Way
- •Другие блочные алгоритмы
- •Теория проектирования блочного шифра
- •Сети Фейстела
- •Простые соотношения
- •Групповая структура
- •Слабые ключи
- •Устойчивость к дифференциальному и линейному криптоанализу
- •Проектирование s-блоков
- •Проектирование блочного шифра
- •Использование однонаправленных хэш-функций
- •Шифр краткого содержания сообщения
- •Безопасность шифров, основанных на однонаправленных хэш-функциях
- •Выбор блочного алгоритма
- •Объединение блочных шифров
- •15.1 Двойное шифрование
- •15.2 Тройное шифрование с двумя ключами
- •Тройное шифрование с тремя ключами
- •Тройное шифрование с минимальным ключом (temk)
- •Режимы тройного шифрования
- •Варианты тройного шифрования
- •15.3 Удвоение длины блока
- •15.4 Другие схемы многократного шифрования
- •Двойной ofb/счетчик
- •Пятикратное шифрование
- •15.5 Уменьшение длины ключа в cdmf
- •15.6 Отбеливание
- •15.7 Многократное последовательное использование блочных алгоритмов
- •15.8 Объединение нескольких блочных алгоритмов
- •Генераторы псевдослучайных последовательностей и потоковые шифры
- •16.1 Линейные конгруэнтные генераторы
- •Объединение линейных конгруэнтных генераторов
- •16.2 Сдвиговые регистры с линейной обратной связью
- •Программная реализация lfsr
- •16.3 Проектирование и анализ потоковых шифров
- •Линейная сложность
- •Корреляционная независимость
- •Другие вскрытия
- •16.4 Потоковые шифры на базе lfsr
- •Генератор Геффа
- •Обобщенный генератор Геффа
- •Генератор Дженнингса
- •Генератор "стоп-пошел" (Stop-and-Go) Both-Piper
- •Чередующийся генератор "стоп-пошел"
- •Двусторонний генератор "стоп-пошел"
- •Пороговый генератор
- •Самопрореживающие (Self-Decimated) генераторы
- •Многоскоростной генератор с внутренним произведением (inner-product)
- •Суммирующий генератор
- •Каскад Голлманна
- •Прореживаемый генератор
- •Самопрореживаемый генератор
- •16.9 Аддитивные генераторы
- •16.11 Алгоритм m
- •Безопасность pkzip
- •Другие потоковые шифры и генераторы настоящих случайных последовательностей
- •Семейство псевдо случайных функций
- •Описание seal
- •Безопасность seal
- •Патенты и лицензии
- •17.4 Сдвиговые регистры с обратной связью по переносу
- •17.5 Потоковые шифры, использующие fcsr
- •Каскадные генераторы
- •Комбинированные генераторы fcsr
- •Каскад lfsr/fcsr с суммированием/четностью
- •Чередующиеся генераторы "стоп-пошел"
- •Прореживаемые генераторы
- •17.6 Сдвиговые регистры с нелинейной обратной связью
- •17.7 Другие потоковые шифры
- •Генератор Плесса (Pless)
- •Генератор на базе клеточного автомата
- •Генератор 1/p
- •Другие схемы
- •17.8 Системно-теоретический подход к проектированию потоковых шифров
- •17.9 Сложностно-теоретический подход к проектированию потоковых шифров
- •Генератор псевдослучайных чисел Шамира
- •Генератор Blum-Micali
- •17.10 Другие подходы к проектированию потоковых шифров
- •Шифр "Рип ван Винкль"
- •Рандомизированный потоковый шифр Диффи
- •Рандомизированный потоковый шифр Маурера
- •17.11 Шифры с каскадом нескольких потоков
- •17.12 Выбор потокового шифра
- •17.13 Генерация нескольких потоков из одного генератора псевдослучайной последовательности
- •17.14 Генераторы реальных случайных последовательностей
- •Использование случайного шума
- •Использование таймера компьютера
- •Измерение скрытого состояния клавиатуры
- •Смещения и корреляции
- •Извлеченная случайность
- •Однонаправленные хэш-функции
- •18.1 Основы
- •Длины однонаправленных хэш-функций
- •Обзор однонаправленных хэш-функций
- •Криптоанализ Snefru
- •Криптоанализ n-хэш
- •Описание md5
- •Безопасность md5
- •18.7 Алгоритм безопасного хэширования (Secure Hash Algorithm, sha)
- •Описание sha
- •Безопасность sha
- •18.10 Другие однонаправленные хэш-функции
- •18.11 Однонаправленные хэш-функции, использующие симметричные блочные алгоритмы
- •Схемы, в которых длина хэш-значения равна длине блока
- •Модификация схемы Davies-Meyer
- •Loki с удвоенным блоком
- •Параллельная схема Davies-Meyer
- •Тандемная (Tandem) и одновременная (Abreast) схемы Davies-Meyer
- •Другие схемы
- •18.12 Использование алгоритмов с открытым ключом
- •18.13 Выбор однонаправленной хэш-функции
- •18.14 Коды проверки подлинности сообщения
- •Алгоритм проверки подлинности сообщения (Message Authenticator Algorithm, maa)
- •Двунаправленный mac
- •Методы Джунемана
- •Однонаправленная хэш-функция mac
- •Mac с использованием потокового шифра
- •Алгоритмы с открытыми ключами
- •19.1 Основы
- •Безопасность алгоритмов с открытыми ключами
- •19.2 Алгоритмы рюкзака
- •Сверхвозрастающие рюкзаки
- •Создание открытого ключа из закрытого
- •Шифрование
- •Дешифрирование
- •Практические реализации
- •Безопасность метода рюкзака
- •Варианты рюкзака
- •Патенты
- •Аппаратные реализации rsa
- •Скорость rsa
- •Программные Speedups
- •Безопасность rsa
- •Вскрытие с выбранным шифротекстом против rsa
- •Вскрытие общего модуля rsa
- •Вскрытие малого показателя шифрования rsa
- •Вскрытие малого показателя дешифрирования rsa
- •Полученные уроки
- •Вскрытие шифрования и подписи с использованием rsa
- •Стандарты
- •Патенты
- •Патенты
- •Подписи ElGamal
- •Шифрование ElGamal
- •Скорость
- •Патенты
- •Другие алгоритмы, основанные на линейных кодах, исправляющих ошибки
- •19.8 Криптосистемы с эллиптическими кривыми
- •19.10 Криптосистемы с открытым ключом на базе конечных автоматов
- •Алгоритмы цифровой подписи с открытым ключом
- •20.1 Алгоритм цифровой подписи (digital signature algorithm, dsa)
- •Реакция на заявление
- •Описание dsa
- •Ускоряющие предварительные вычисления
- •Генерация простых чисел dsa
- •Шифрование ElGamal с dsa
- •Шифрование rsa с dsa
- •Безопасность dsa
- •Вскрытия k
- •Опасности общего модуля
- •Подсознательный канал в dsa
- •Патенты
- •20.2 Варианты dsa
- •20.3 Алгоритм цифровой подписи гост
- •20.4 Схемы цифровой подписи с использованием дискретных логарифмов
- •Безопасность esign
- •Патенты
- •20.7 Клеточные автоматы
- •20.8 Другие алгоритмы с открытым ключом
- •Схемы идентификации
- •Упрощенная схема идентификации Feige-Fiat-Shamir
- •Улучшения
- •Улучшенная схема подписи Fiat-Shamir
- •Другие улучшения
- •Патенты
- •Несколько подписей
- •Протокол проверки подлинности
- •Протокол цифровой подписи
- •Патенты
- •Преобразование схем идентификации в схемы подписи
- •Алгоритмы обмена ключами
- •Diffie-Hellman с тремя и более участниками *
- •Расширенный Diffie-Hellman
- •Обмен ключом без обмена ключом
- •Патенты
- •Протокол "точка-точка"
- •Трехпроходный протокол Шамира
- •Обмен зашифрованными ключами
- •Базовый протокол eke
- •Реализация eke с помощью rsa
- •Реализация eke с помощью ElGamal
- •Реализация eke с помощью Diffie-Hellman
- •Усиление eke
- •Расширенный eke
- •Применения eke
- •Защишенные переговоры о ключе
- •Распределение ключа для конференции и секретная широковещательная передача
- •Распределение ключей для конференции
- •Специальные алгоритмы для протоколов Криптография с несколькими открытыми ключами
- •Алгоритмы разделения секрета
- •Векторная схема
- •Более сложные пороговые схемы
- •Разделение секрета с мошенниками
- •Подсознательный канал
- •Уничтожение подсознательного канала в dsa
- •Другие схемы
- •Неотрицаемые цифровые подписи
- •Преобразуемые неотрицаемые подписи
- •Подписи, подтверждаемые доверенным лицом
- •Вычисления с зашифрованными данными Проблема дискретного логарифма
- •Бросание "честной" монеты
- •Бросание "честной" монеты с помощью квадратных корней
- •Бросание "честной" монеты с помощью возведения в степень по модулю p
- •Бросание "честной" монеты с помощью целых чисел Блюма
- •Однонаправленные сумматоры
- •Раскрытие секретов "все или ничего"
- •Честные и отказоустойчивые криптосистемы Честная схема Diffie-Hellman
- •Отказоустойчивая схема Diffie-Hellman
- •Доказательство с нулевым знанием для дискретного логарифма
- •Доказательство с нулевым знанием для возможности вскрыть rsa
- •Доказательство с нулевым знанием того, что n является числом Блюма
- •Слепые подписи
- •Передача с забыванием
- •Безопасные вычисления с несколькими участниками
- •Пример протокола
- •Вероятностное шифрование
- •Квантовая криптография
- •Часть IV Реальный мир Примеры реализаций
- •Протокол управления секретными ключами компании ibm
- •Модификация
- •Модель Kerberos
- •Как работает Kerberos
- •Атрибуты
- •Сообщения Kerberos версии 5
- •Получение первоначального мандата
- •Получение серверных мандатов
- •Запрос услуги
- •Kerberos версии 4
- •Безопасность Kerberos
- •Лицензии
- •Общая криптографическая архитектура ibm
- •Сертификаты
- •Протоколы проверки подлинности
- •Почта с повышенной секретностью privacy-enhanced mail (pem)
- •Документы pem
- •Сертификаты
- •Сообщения pem
- •Безопасность pem
- •Протокол безопасности сообщений
- •Интеллектуальные карточки
- •Стандарты криптографии с открытыми ключами
- •Универсальная система электронных платежей
- •Безопасный телефон at&t model 3600 telephone security device (tsd)
- •Политика Агентство национальной безопасности (nsa)
- •Коммерческая программа сертификации компьютерной безопасности
- •Национальный центр компьютерной безопасности (ncsc)
- •Национальный институт стандартов и техники
- •Международная ассоциация криптологических исследований
- •Оценка примитивов целостности race (ripe)
- •Условный доступ для Европы (cafe)
- •Профессиональные и промышленные группы, а также группы защитников гражданских свобод Информационный центр по электронной тайне личности (epic)
- •Фонд электронного фронтира (eff)
- •Ассоциация по вычислительной технике (acm)
- •Институт инженеров по электричеству и радиоэлектронике (ieee)
- •Ассоциация производителей программного обеспечения (spa)
- •Шифропанки
- •Патенты
- •Экспортное законодательство сша
- •§ 120.10 Технические данные.
- •§ 120.11 Открытый доступ.
- •§ 120.17 Экспорт.
- •Часть 121- Перечень вооружений сша
- •§ 121.1 Общие положения. Перечень вооружений сша
- •§ 125.2 Экспорт несекретных технических данных.
- •Экспорт и импорт криптографии за рубежом
- •Правовые вопросы
- •Схемы идентификации
- •Упрощенная схема идентификации Feige-Fiat-Shamir
- •Улучшения
- •Улучшенная схема подписи Fiat-Shamir
- •Другие улучшения
- •Патенты
- •Несколько подписей
- •Протокол проверки подлинности
- •Протокол цифровой подписи
- •Патенты
- •Преобразование схем идентификации в схемы подписи
- •Алгоритмы обмена ключами
- •Diffie-Hellman с тремя и более участниками *
- •Расширенный Diffie-Hellman
- •Обмен ключом без обмена ключом
- •Патенты
- •Протокол "точка-точка"
- •Трехпроходный протокол Шамира
- •Обмен зашифрованными ключами
- •Базовый протокол eke
- •Реализация eke с помощью rsa
- •Реализация eke с помощью ElGamal
- •Реализация eke с помощью Diffie-Hellman
- •Усиление eke
- •Расширенный eke
- •Применения eke
- •Защишенные переговоры о ключе
- •Распределение ключа для конференции и секретная широковещательная передача
- •Распределение ключей для конференции
- •Специальные алгоритмы для протоколов Криптография с несколькими открытыми ключами
- •Алгоритмы разделения секрета
- •Векторная схема
- •Более сложные пороговые схемы
- •Разделение секрета с мошенниками
- •Подсознательный канал
- •Уничтожение подсознательного канала в dsa
- •Другие схемы
- •Неотрицаемые цифровые подписи
- •Преобразуемые неотрицаемые подписи
- •Подписи, подтверждаемые доверенным лицом
- •Вычисления с зашифрованными данными Проблема дискретного логарифма
- •Бросание "честной" монеты
- •Бросание "честной" монеты с помощью квадратных корней
- •Бросание "честной" монеты с помощью возведения в степень по модулю p
- •Бросание "честной" монеты с помощью целых чисел Блюма
- •Однонаправленные сумматоры
- •Раскрытие секретов "все или ничего"
- •Честные и отказоустойчивые криптосистемы Честная схема Diffie-Hellman
- •Отказоустойчивая схема Diffie-Hellman
- •Доказательство с нулевым знанием для дискретного логарифма
- •Доказательство с нулевым знанием для возможности вскрыть rsa
- •Доказательство с нулевым знанием того, что n является числом Блюма
- •Слепые подписи
- •Передача с забыванием
- •Безопасные вычисления с несколькими участниками
- •Пример протокола
- •Вероятностное шифрование
- •Квантовая криптография
- •Часть IV Реальный мир Примеры реализаций
- •Протокол управления секретными ключами компании ibm
- •Модификация
- •Модель Kerberos
- •Как работает Kerberos
- •Атрибуты
- •Сообщения Kerberos версии 5
- •Получение первоначального мандата
- •Получение серверных мандатов
- •Запрос услуги
- •Kerberos версии 4
- •Безопасность Kerberos
- •Лицензии
- •Общая криптографическая архитектура ibm
- •Сертификаты
- •Протоколы проверки подлинности
- •Почта с повышенной секретностью privacy-enhanced mail (pem)
- •Документы pem
- •Сертификаты
- •Сообщения pem
- •Безопасность pem
- •Протокол безопасности сообщений
- •Интеллектуальные карточки
- •Стандарты криптографии с открытыми ключами
- •Универсальная система электронных платежей
- •Безопасный телефон at&t model 3600 telephone security device (tsd)
- •Политика Агентство национальной безопасности (nsa)
- •Коммерческая программа сертификации компьютерной безопасности
- •Национальный центр компьютерной безопасности (ncsc)
- •Национальный институт стандартов и техники
- •Международная ассоциация криптологических исследований
- •Оценка примитивов целостности race (ripe)
- •Условный доступ для Европы (cafe)
- •Профессиональные и промышленные группы, а также группы защитников гражданских свобод Информационный центр по электронной тайне личности (epic)
- •Фонд электронного фронтира (eff)
- •Ассоциация по вычислительной технике (acm)
- •Институт инженеров по электричеству и радиоэлектронике (ieee)
- •Ассоциация производителей программного обеспечения (spa)
- •Шифропанки
- •Патенты
- •Экспортное законодательство сша
- •§ 120.10 Технические данные.
- •§ 120.11 Открытый доступ.
- •§ 120.17 Экспорт.
- •Часть 121- Перечень вооружений сша
- •§ 121.1 Общие положения. Перечень вооружений сша
- •§ 125.2 Экспорт несекретных технических данных.
- •Экспорт и импорт криптографии за рубежом
- •Правовые вопросы
Улучшения
В протокол можно встроить идентификационные данные. Пусть I - это двоичная строка, представляющая идентификатор Пегги: имя, адрес, номер социального страхования, размер головного убора, любимый сорт прохладительного напитка и другая личная информация. Используем однонаправленную хэш-функцию H(x) для вычисления H(I,j), где j - небольшое число, добавленное к I. Найдем набор j, для которых H(I,j) - это квадратичный остаток по модулю n. Эти значения H(I,j) становятся v1, v2, . . . vk (j не обязаны быть квадратичными остатками). Теперь открытым ключом Пегги служит I и перечень j. Пегги посылает I и перечень j Виктору перед шагом (1) протокола (или Виктор загружает эти значения с какой-то открытой доски объявлений), И Виктор генерирует v1, v2, . . . vk из H(I,j).
Теперь, после того, как Виктор успешно завершит протокол с Пегги, он будет убежден, что Трент, которому известно разложение модуля на множители, сертифицировал связь между I и Пегги, выдав ей квадратные корни из vi, полученные из I. (См. раздел 5.2.) Фейге, Фиат и Шамир добавили следующие замечания [544, 545]:
Для неидеальных хэш-функций можно посоветовать рандомизировать I, добавляя к нему длинную случайную строку R. Эта строка выбирается арбитром и открывается Виктору вместе с I.
В типичных реализациях k должно быть от 1 до 18. Большие значения k могут уменьшить время и трудности связи, уменьшая количество этапов.
Длина n должна быть не меньше 512 битов. (Конечно, с тех пор разложение на множители заметно продвинулось.)
Если каждый пользователь выберет свое собственное n и опубликует его в файле открытых ключей, то можно обойтись и без арбитра. Однако такой RSA-подобный вариант делает схему заметно менее удобной.
Схема подписи Fiat-Shamir
Превращение этой схемы идентификации в схему подписи - это, по сути, вопрос превращения Виктора в хэш-функциию. Главным преимуществом схемы цифровой подписи Fiat-Shamir по сравнению с RSA является ее скорость: для Fiat-Shamir нужно всего лишь от 1 до 4 процентов модульных умножений, используемых в RSA. В этом протоколе снова вернемся к Алисе и Бобу.
Смысл переменных - такой же, как и в схеме идентификации. Выбирается n - произведение двух больших простых чисел. Генерируется открытый ключ, v1, v2, . . . vk, и закрытый ключ, s1, s2, . . . sk, где si sqrt (vi-1) (mod n).
Алиса выбирает t случайных целых чисел в диапазоне от 1 до n - r1, r2, . . ., rt - и вычисляет x1, x2, . . . xt, такие что xi = ri2 mod n.
Алиса хэширует объединение сообщения и строки xi, создавая битовый поток: H(m, x1, x2, . . . xt). Она использует первые k*t битов этой строки в качестве значений bij, где i пробегает от1 до t, а j от 1 до k.
Алиса вычисляет y1, y2, . . . yt,, где yi = ri *(
) mod n
(Для каждого i она перемножает вместе значения si, в зависимости от случайных значений bij. Если bij=1, то si участвует в вычислениях, если bij=0, то нет.)
Алиса посылает Бобу m, все биты bij, и все значения yi. У Боба уже есть открытый ключ Алисы: v1, v2, . . . vk.
Боб вычисляет z1, z2, . . . zt, где zi = y2*(
) mod n
(И снова Боб выполняет умножение в зависимости от значений bij.) Также обратите внимание, что zi должно быть равно xi.
Боб проверяет, что первые k*t битов H(m, z1, z2, . . . zt) - это значения bij, которые прислала ему Алиса.
Как и в схеме идентификации безопасность схемы подписи пропорциональна l/2kt. Она также зависит от сложности разложения n на множители. Фиат и Шамир показали, что подделка подписи облегчается, если сложность разложения n на множители заметно меньше 2kt. Кроме того, из-за вскрытия методом дня рождения (см. раздел 18.1), они рекомендуют повысить k*t от 20 по крайней мере до 72, предлагая k = 9 и t = 8.