
- •Введение.
- •Рекомендуемая основная литература
- •Рекомендуемая дополнительная литература
- •Цель и задачи курса.
- •Краткая историческая справка
- •Основные разделы курса тмм
- •Связь курса тмм с общеобразовательными, общеинженерными и специальными дисциплинами.
- •Понятие о инженерном проектировании.
- •Методы проектирования.
- •Основные этапы процесса проектирования.
- •Машины и их классификация.
- •Понятие о машинном агрегате.
- •Механизм и его элементы.
- •Классификация механизмов.
- •Список дополнительной литературы к Лекции 1.
- •Классификация кинематических пар.
- •Классификация кинематических пар по числу связей и по подвижности.
- •Модели машин.
- •Виды моделей.
- •Структура механизмов.
- •Понятие о структурном синтезе и анализе.
- •Основные понятия структурного синтеза и анализа.
- •Основные структурные формулы.
- •Пример структурного анализа механизма.
- •Функциональная схема на уровне типовых механизмов.
- •Структурная классификация механизмов по Ассуру л.В.
- •Геометрические и кинематические характеристики механизма
- •Функции положения в механизмах
- •Методы геометро-кинематического исследования механизмов
- •Связь кинематических и передаточных функций
- •1. Метод проекций векторного контура. (Рычажные механизмы).
- •1. 1. Задача о положениях звеньев механизма
- •1. 2. Задача о первых кинематических передаточных функциях механизма
- •1. 3. Задача о вторых передаточных функциях механизма.
- •Метод центроид (Зубчатые передачи).
- •4. Метод преобразования координат (Манипуляторы)
- •4. 1. Формирование матрицы перехода для плоских механизмов.
- •5. Экспериментальный метод кинематического исследования.
- •Динамика машин и механизмов.
- •Прямая и обратная задачи динамики машин.
- •Механическая работа, энергия и мощность.
- •Преобразование энергии в механизмах.
- •Аксиома освобождения от связей.
- •Классификация сил, действующих в механизмах.
- •Силы в кинематических парах плоских механизмов (без учета трения).
- •Силовой расчет типовых механизмов.
- •Кинетостатический силовой расчет типовых механизмов.
- •Кинетостатический расчет четырехшарнирного механизма (метод проекций или аналитический).
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •2.2. Моментная неуравновешенность.
- •3. Уравновешивание роторов при проектировании.
- •1. Статическое уравновешивание при проектировании.
- •2. Вращательная кп
- •3. Высшая кп.
- •1. Теория механизмов и машин. Под ред. К.В.Фролова. М.: Высшая школа, 1987.
- •2. Кривошипно-ползунный механизм.
- •1. Проектирование по коэффициенту неравномерности средней скорости .
- •2. Проектирование по двум положениям выходного звена .
- •3. Проектирование кривошипно-ползунного механизма по средней скорости ползуна .
- •Проектирование кулисного механизма по углу давления .
- •Проектирование шестизвенного кулисного механизма .
- •Цилиндрическая эвольвентная зубчатая передача.
- •Коэффициент формы зуба
- •Коэффициент удельного давления
- •Коэффициент удельного скольжения.
- •Оптимальный геометрический синтез зубчатой передачи.
- •Программное обеспечение сапр зубчатых передач.
- •Косозубые цилиндрические эвольвентные передачи и особенности их расчета.
- •Коэффициент осевого перекрытия.
- •Виды червячных передач и червяков ( по гост 18498-73 ).
- •Расчет геометрии зацепления.
- •Геометрические показатели качества зацепления.
- •Преимущества и недостатки червячных зубчатых передач
- •Теорема Камуса.
- •Преимущества и недостатки циклоидального зацепления
- •Типовые планетарные механизмы
- •Аналитическое исследование кинематики рядного механизма
- •Графическое исследование кинематики рядного механизма
- •Движение механизма относительно стойки
- •Движение механизма относительно водила
- •1. Двухрядный механизм с одним внутренним и одним внешним зацеплением.
- •Аналитическое определение передаточного отношения.
- •Графическое определение передаточного отношения.
- •2. Однорядный механизм с одним внутренним и одним внешним зацеплением.
- •3. Двухрядный механизм с двумя внешними зацеплениями.
- •4. Двухрядный механизм с двумя внутренними зацеплениями.
- •Кинематическое исследование пространственных планетарных механизмов методом планов угловых скоростей.
- •2. Определение основных размеров кулачкового механизма.
- •Промышленные роботы и манипуляторы.
- •Назначение и область применения.
- •Классификация промышленных роботов.
- •Принципиальное устройство промышленного робота.
- •Основные понятия и определения. Структура манипуляторов. Геометро-кинематические характеристики.
- •Задачи механики манипуляторов.
- •Кинематический анализ механизма манипулятора.
- •Динамика манипуляторов промышленных роботов. Силовой расчет манипулятора.
- •Расчет быстродействия промышленного робота.
- •Циклограммы командоаппарата и промышленного робота.
- •Уравновешивание манипуляторов.
- •Точность манипуляторов пр.
- •Литература
- •Задачи динамики механизмов с учетом податливости звеньев.
- •Виды механических колебаний.
- •Динамическая модель системы с упругими связями.
- •Двухмассовая модель привода с упругими связями.
- •Определение закона движения динамической модели.
- •Упругие вынужденные колебания в системе.
- •Определение собственных частот колебаний системы.
- •Определение форм колебаний.
- •Пример для системы без упругих связей.
- •Моделирование динамических процессов в приводе с упругими связями.
Циклограммы командоаппарата и промышленного робота.
|
Рис. 20.5 |
Рассмотрим работу пневмопривода перемещения руки манипулятора (рис.20.5). По сигналу от командоаппарата в правую полость цилиндра подается сжатый воздух, который действует на поршень с силой Fд3 = p * Sп, где р - давление воздуха, Sп - активная площадь поршня. Под действием этой силы поршень и рука 3 перемещаются влево с постоянным ускорением и с возрастающей скоростью V32 (рис.20.6а). Ограничение хода поршня может осуществляться либо жестким упором без демпфера, либо упором с демпфером.
|
Рис. 20.6 |
При остановке на упоре без демпфера , скорость звена 3 должна мгновенно уменьшится с некоторого конечного значения до нуля. При таком изменении скорости ускорение a32 стремится к бесконечности. Такая остановка звена называется жестким ударом. Она сопровождается большими динамическими нагрузками на звенья механизма. Так как реальный манипулятор представляет собой упруго-инерционную систему, то эти нагрузки вызовут отскок звена 3 от упора, а также колебания всего механизма. Схват будет совершать колебания относительно заданного конечного положения. Время затухания этого процесса t (рис.20.6а) значительно снижает быстродействие ПР. Уменьшить эти колебания или вообще исключить их можно, обеспечив безударный останов
V32n = 0, a32n = 0;
где V32n, a32n - относительная скорость и относительное ускорение звеньев в момент останова. Однако это осуществимо только в регулируемом приводе при контурном управлении. Кроме того при безударном останове в конце хода относительная скорость близка к нулю, поэтому время перемещения схвата в требуемое положение значительно возрастает. Компромиссным решением является останов с мягким ударом, при котором относительная скорость в конце хода V32n= 0, а ускорение ограничено некоторым допустимым значением a32n <= [a] . В механизмах с цикловым управлением режим движения с мягким ударом обеспечивается установкой упоров с демпферами, гасящими кинетическую энергию руки. Расчет демпфера ведется из условия An =0 , которое обеспечивается равенством за цикл движения работы движущей силы AFд3 и работы силы сопротивления демпфера АFc (рис. 20.6б):
AFд3 = -АFc или Fд3 * (H32 – hд) = - Fc * hд.
В этом выражении неизвестны две величины Fc и hд, одной из них задаются, вторую – рассчитывают.
Уравновешивание манипуляторов.
В большинстве кинематических схем манипуляторов приводы восприниамают статические нагрузки от сил веса звеньев. Это требует значительного увеличения мощностей двигателей приводов и моментов тормозных устройств. Для борьбы с этим используют три метода: