
- •Введение.
- •Рекомендуемая основная литература
- •Рекомендуемая дополнительная литература
- •Цель и задачи курса.
- •Краткая историческая справка
- •Основные разделы курса тмм
- •Связь курса тмм с общеобразовательными, общеинженерными и специальными дисциплинами.
- •Понятие о инженерном проектировании.
- •Методы проектирования.
- •Основные этапы процесса проектирования.
- •Машины и их классификация.
- •Понятие о машинном агрегате.
- •Механизм и его элементы.
- •Классификация механизмов.
- •Список дополнительной литературы к Лекции 1.
- •Классификация кинематических пар.
- •Классификация кинематических пар по числу связей и по подвижности.
- •Модели машин.
- •Виды моделей.
- •Структура механизмов.
- •Понятие о структурном синтезе и анализе.
- •Основные понятия структурного синтеза и анализа.
- •Основные структурные формулы.
- •Пример структурного анализа механизма.
- •Функциональная схема на уровне типовых механизмов.
- •Структурная классификация механизмов по Ассуру л.В.
- •Геометрические и кинематические характеристики механизма
- •Функции положения в механизмах
- •Методы геометро-кинематического исследования механизмов
- •Связь кинематических и передаточных функций
- •1. Метод проекций векторного контура. (Рычажные механизмы).
- •1. 1. Задача о положениях звеньев механизма
- •1. 2. Задача о первых кинематических передаточных функциях механизма
- •1. 3. Задача о вторых передаточных функциях механизма.
- •Метод центроид (Зубчатые передачи).
- •4. Метод преобразования координат (Манипуляторы)
- •4. 1. Формирование матрицы перехода для плоских механизмов.
- •5. Экспериментальный метод кинематического исследования.
- •Динамика машин и механизмов.
- •Прямая и обратная задачи динамики машин.
- •Механическая работа, энергия и мощность.
- •Преобразование энергии в механизмах.
- •Аксиома освобождения от связей.
- •Классификация сил, действующих в механизмах.
- •Силы в кинематических парах плоских механизмов (без учета трения).
- •Силовой расчет типовых механизмов.
- •Кинетостатический силовой расчет типовых механизмов.
- •Кинетостатический расчет четырехшарнирного механизма (метод проекций или аналитический).
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •2.2. Моментная неуравновешенность.
- •3. Уравновешивание роторов при проектировании.
- •1. Статическое уравновешивание при проектировании.
- •2. Вращательная кп
- •3. Высшая кп.
- •1. Теория механизмов и машин. Под ред. К.В.Фролова. М.: Высшая школа, 1987.
- •2. Кривошипно-ползунный механизм.
- •1. Проектирование по коэффициенту неравномерности средней скорости .
- •2. Проектирование по двум положениям выходного звена .
- •3. Проектирование кривошипно-ползунного механизма по средней скорости ползуна .
- •Проектирование кулисного механизма по углу давления .
- •Проектирование шестизвенного кулисного механизма .
- •Цилиндрическая эвольвентная зубчатая передача.
- •Коэффициент формы зуба
- •Коэффициент удельного давления
- •Коэффициент удельного скольжения.
- •Оптимальный геометрический синтез зубчатой передачи.
- •Программное обеспечение сапр зубчатых передач.
- •Косозубые цилиндрические эвольвентные передачи и особенности их расчета.
- •Коэффициент осевого перекрытия.
- •Виды червячных передач и червяков ( по гост 18498-73 ).
- •Расчет геометрии зацепления.
- •Геометрические показатели качества зацепления.
- •Преимущества и недостатки червячных зубчатых передач
- •Теорема Камуса.
- •Преимущества и недостатки циклоидального зацепления
- •Типовые планетарные механизмы
- •Аналитическое исследование кинематики рядного механизма
- •Графическое исследование кинематики рядного механизма
- •Движение механизма относительно стойки
- •Движение механизма относительно водила
- •1. Двухрядный механизм с одним внутренним и одним внешним зацеплением.
- •Аналитическое определение передаточного отношения.
- •Графическое определение передаточного отношения.
- •2. Однорядный механизм с одним внутренним и одним внешним зацеплением.
- •3. Двухрядный механизм с двумя внешними зацеплениями.
- •4. Двухрядный механизм с двумя внутренними зацеплениями.
- •Кинематическое исследование пространственных планетарных механизмов методом планов угловых скоростей.
- •2. Определение основных размеров кулачкового механизма.
- •Промышленные роботы и манипуляторы.
- •Назначение и область применения.
- •Классификация промышленных роботов.
- •Принципиальное устройство промышленного робота.
- •Основные понятия и определения. Структура манипуляторов. Геометро-кинематические характеристики.
- •Задачи механики манипуляторов.
- •Кинематический анализ механизма манипулятора.
- •Динамика манипуляторов промышленных роботов. Силовой расчет манипулятора.
- •Расчет быстродействия промышленного робота.
- •Циклограммы командоаппарата и промышленного робота.
- •Уравновешивание манипуляторов.
- •Точность манипуляторов пр.
- •Литература
- •Задачи динамики механизмов с учетом податливости звеньев.
- •Виды механических колебаний.
- •Динамическая модель системы с упругими связями.
- •Двухмассовая модель привода с упругими связями.
- •Определение закона движения динамической модели.
- •Упругие вынужденные колебания в системе.
- •Определение собственных частот колебаний системы.
- •Определение форм колебаний.
- •Пример для системы без упругих связей.
- •Моделирование динамических процессов в приводе с упругими связями.
4. Метод преобразования координат (Манипуляторы)
При использовании метода преобразования координат задача о положении выходного звена решается путем перехода из системы в которой это положение известно в систему в которой его требуется определить. Переход от системы к системе осуществляется перемножением матриц перехода в соответствующей последовательности.
4. 1. Формирование матрицы перехода для плоских механизмов.
|
Рис. 3.12 |
Координаты точки М в системе i через координаты этой точки в системе j определятся следующей системой уравнений:
|
Тогда векторы столбцы координат точки М и матрица перехода из системы j в систему i
|
Векторное уравнение перехода из системы j в систему i
|
Пример применения метода преобразования координат для плоского трехподвижного манипулятора:
|
Рис. 3.13 |
5. Экспериментальный метод кинематического исследования.
При экспериментальном исследовании кинематики механизмов кинематические характеристики звеньев и точек механизма определяются и регистрируются с помощью чувствительных элементов - датчиков, которые используя различные физические эффекты преобразуют кинематические параметры в пропорциональные электрические сигналы. Эти сигналы регистрируются измерительными самопишущими приборами (самописцами, осциллографами и др.). В последнее время для регистрации и обработки экспериментальных данных все более широко используются специальные или универсальные компьютеры. Для примера рассмотрим экспериментальную установку для исследования кинематических характеристик синусного механизма:
|
Рис. 3.14 |
В этой экспериментальной установке:
для измерения перемещения выходного звена используется потенциометрический датчик перемещения, в котором пропорционально положению движка потенциометра изменяется его сопротивление;
для измерения скорости выходного звена используется идукционный датчик скорости, в котором напряжение на концах катушки движущейся в поле постоянного магнита пропорционально скорости катушки;
для измерения ускорения выходного звена используется тензометрическиий акселерометр. Он состоит из пластинчатой пружины один конец которой закреплен на выходном звене механизма, а на втором закреплена масса. На пластину наклеены проволочные тензопреобразователи. При движении выходного звена с ускорением инерционность массы вызывает изгиб пластины , деформацию тензопреобразователей и изменение их сопротивления пропорциональное ускорению выходного звена.
Передаточные функции механизмов с несколькими подвижностями (W>1).
Рассмотрим простой двухподвижный манипулятор
|
Рис. 3.15 |
Функция положения для выходного звена этого механизма является функцией двух переменных
2 = P(10,f21),
и ее производная определится как производная функции двух переменных:
d2 = [dP( / 10] d10 + [dP(] d = q10 * d + q21 * d21,
где q10 и q21 - частные производные по обобщенным координатам
ЛЕКЦИЯ 4
Краткое содержание: Динамика машин и механизмов. Динамические параметры машины и механизма. Прямая и обратная задачи динамики. Механическая энергия и мощность. Работа внешних сил. Преобразование механической энергии механизмами. Аксиома об освобождения от связей. Силы и их классификация. Силы в КП без учета трения. Статический и кинетостатический силовой расчет типовых механизмов. Методы силового расчета (графоаналитический - планов сил, аналитический - метод проекций на оси координат).