
- •Введение.
- •Рекомендуемая основная литература
- •Рекомендуемая дополнительная литература
- •Цель и задачи курса.
- •Краткая историческая справка
- •Основные разделы курса тмм
- •Связь курса тмм с общеобразовательными, общеинженерными и специальными дисциплинами.
- •Понятие о инженерном проектировании.
- •Методы проектирования.
- •Основные этапы процесса проектирования.
- •Машины и их классификация.
- •Понятие о машинном агрегате.
- •Механизм и его элементы.
- •Классификация механизмов.
- •Список дополнительной литературы к Лекции 1.
- •Классификация кинематических пар.
- •Классификация кинематических пар по числу связей и по подвижности.
- •Модели машин.
- •Виды моделей.
- •Структура механизмов.
- •Понятие о структурном синтезе и анализе.
- •Основные понятия структурного синтеза и анализа.
- •Основные структурные формулы.
- •Пример структурного анализа механизма.
- •Функциональная схема на уровне типовых механизмов.
- •Структурная классификация механизмов по Ассуру л.В.
- •Геометрические и кинематические характеристики механизма
- •Функции положения в механизмах
- •Методы геометро-кинематического исследования механизмов
- •Связь кинематических и передаточных функций
- •1. Метод проекций векторного контура. (Рычажные механизмы).
- •1. 1. Задача о положениях звеньев механизма
- •1. 2. Задача о первых кинематических передаточных функциях механизма
- •1. 3. Задача о вторых передаточных функциях механизма.
- •Метод центроид (Зубчатые передачи).
- •4. Метод преобразования координат (Манипуляторы)
- •4. 1. Формирование матрицы перехода для плоских механизмов.
- •5. Экспериментальный метод кинематического исследования.
- •Динамика машин и механизмов.
- •Прямая и обратная задачи динамики машин.
- •Механическая работа, энергия и мощность.
- •Преобразование энергии в механизмах.
- •Аксиома освобождения от связей.
- •Классификация сил, действующих в механизмах.
- •Силы в кинематических парах плоских механизмов (без учета трения).
- •Силовой расчет типовых механизмов.
- •Кинетостатический силовой расчет типовых механизмов.
- •Кинетостатический расчет четырехшарнирного механизма (метод проекций или аналитический).
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •2.2. Моментная неуравновешенность.
- •3. Уравновешивание роторов при проектировании.
- •1. Статическое уравновешивание при проектировании.
- •2. Вращательная кп
- •3. Высшая кп.
- •1. Теория механизмов и машин. Под ред. К.В.Фролова. М.: Высшая школа, 1987.
- •2. Кривошипно-ползунный механизм.
- •1. Проектирование по коэффициенту неравномерности средней скорости .
- •2. Проектирование по двум положениям выходного звена .
- •3. Проектирование кривошипно-ползунного механизма по средней скорости ползуна .
- •Проектирование кулисного механизма по углу давления .
- •Проектирование шестизвенного кулисного механизма .
- •Цилиндрическая эвольвентная зубчатая передача.
- •Коэффициент формы зуба
- •Коэффициент удельного давления
- •Коэффициент удельного скольжения.
- •Оптимальный геометрический синтез зубчатой передачи.
- •Программное обеспечение сапр зубчатых передач.
- •Косозубые цилиндрические эвольвентные передачи и особенности их расчета.
- •Коэффициент осевого перекрытия.
- •Виды червячных передач и червяков ( по гост 18498-73 ).
- •Расчет геометрии зацепления.
- •Геометрические показатели качества зацепления.
- •Преимущества и недостатки червячных зубчатых передач
- •Теорема Камуса.
- •Преимущества и недостатки циклоидального зацепления
- •Типовые планетарные механизмы
- •Аналитическое исследование кинематики рядного механизма
- •Графическое исследование кинематики рядного механизма
- •Движение механизма относительно стойки
- •Движение механизма относительно водила
- •1. Двухрядный механизм с одним внутренним и одним внешним зацеплением.
- •Аналитическое определение передаточного отношения.
- •Графическое определение передаточного отношения.
- •2. Однорядный механизм с одним внутренним и одним внешним зацеплением.
- •3. Двухрядный механизм с двумя внешними зацеплениями.
- •4. Двухрядный механизм с двумя внутренними зацеплениями.
- •Кинематическое исследование пространственных планетарных механизмов методом планов угловых скоростей.
- •2. Определение основных размеров кулачкового механизма.
- •Промышленные роботы и манипуляторы.
- •Назначение и область применения.
- •Классификация промышленных роботов.
- •Принципиальное устройство промышленного робота.
- •Основные понятия и определения. Структура манипуляторов. Геометро-кинематические характеристики.
- •Задачи механики манипуляторов.
- •Кинематический анализ механизма манипулятора.
- •Динамика манипуляторов промышленных роботов. Силовой расчет манипулятора.
- •Расчет быстродействия промышленного робота.
- •Циклограммы командоаппарата и промышленного робота.
- •Уравновешивание манипуляторов.
- •Точность манипуляторов пр.
- •Литература
- •Задачи динамики механизмов с учетом податливости звеньев.
- •Виды механических колебаний.
- •Динамическая модель системы с упругими связями.
- •Двухмассовая модель привода с упругими связями.
- •Определение закона движения динамической модели.
- •Упругие вынужденные колебания в системе.
- •Определение собственных частот колебаний системы.
- •Определение форм колебаний.
- •Пример для системы без упругих связей.
- •Моделирование динамических процессов в приводе с упругими связями.
Геометрические и кинематические характеристики механизма
|
Рис. 3.1 |
Кинематическими передаточными функциями механизма называются производные от функции положения по обобщенной координате. Первая производная называется первой передаточной функцией или аналогом скорости (обозначается Vq,q), вторая - второй передаточной функцией или аналогом ускорения (обозначается aq, q).
Кинематическими характеристиками механизма называются производные от функции положения по времени. Первая производная называется скоростью (обозначается V, , вторая - ускорением (обозначается a, ).
Механизм с одной подвижностью имеет одно заданное входное движение и бесчисленное множество выходных ( движение любого звена или точки механизма ). Передаточные функции тех движений, которые в данном случае используются как выходные, называются главными, остальные - вспомогательными.
Рассмотрим схему механической системы образованной последовательно-параллельным соединением типовых механизмов. Схема включает входное звено, зубчатую передачу , кулачковый и рычажный механизмы и имеет два выходных звена.
Схема механической системы
|
Рис. 3.2 |
|
Рис. 3.3 |
Функции положения в механизмах
|
Рис. 3.4 |
Методы геометро-кинематического исследования механизмов
планов положений, скоростей и ускорений,
проекций векторного контура,
кинематических диаграмм,
центроид,
преобразования координат,
экспериментальный,
другие.
Связь кинематических и передаточных функций
Линейные скорости и ускорения
VL= dSL / dt = (dSL / d1) * (d1 / dt) = VqL * 1;
a L = d(Vql * 1) / dt = (dVqL / d1) * (d1 / dt) * 1 + Vql * 1 = aqL * 12 + VqL * 1;
Угловые скорости и ускорения
i = di / dt = (di / d1) * (d1 / dt) = qi * 1;
i = d(qi * 1) / dt = (di / d1) * (d1 / dt) * 1 + qi * 1 = qi * 12 + qi * i.
Так как данные формулы получены как производные от скалярных величин, то при операциях с векторными величинами они применимы только для проекций этих величин на оси координат.
1. Метод проекций векторного контура. (Рычажные механизмы).
Рассмотрим простейший кулисный механизм.
|
Рис. 3.5 |
Заменим кинематическую схему механизма эквивалентным векторным контуром
Тогда уравнение замкнутости векторного контура запишется:
|
1. 1. Задача о положениях звеньев механизма
|
Рис. 3.6 |
Проецируем векторный контур на оси координат и получаем координаты точки В механизма:
xB = lAB * cos (1) = lAD * cos () + lDB * cos (3);
yB = lAB * sin (1) = lAD * sin () + lDB * sin (f3);
из решения этой системы уравнений определяем неизвестные величины 3 и lDB, которые определяют положение звеньев и точек механизма
tg (3 ) = sin (3) / cos (3) = lAB * sin (1) / (lAB * cos (1) - lAD * cos ());
lDB = (lAB * sin (1) / sin (3);