
- •2. Принцип действия транзистора.
- •3. Тринистор.
- •1. Прямое смещение р-n перехода.
- •2. Токи в транзисторе.
- •3. Полевой транзистор с изолированным затвором и индуцированным каналом. Характеристики.
- •1. Обратное смещение р-n перехода.
- •2. Модуляция толщины базы коллекторным напряжением.
- •3. Пленочные интегральные схемы.
- •1. Вольтамперная характеристика р-n перехода.
- •2. Схема включения транзистора с общей базой, параметры.
- •3. Зависимость коэффициента передачи тока транзистора от частоты.
- •1. Емкости р-n перехода.
- •2. Схема дтл - диодно-транзисторной логики.
- •3. Достоинства и недостатки полевых транзисторов. Преимущества и недостатки полевых транзисторов перед биполярными.
- •Главные преимущества полевых транзисторов
- •Главные недостатки полевых транзисторов
- •2. Особенности схемы с общей базой. Достоинства и недостатки.
- •3. Динистор.
- •1) Прямое смещение р-n перехода:
- •2) Схема включения транзистора с общим эмиттером, параметры:
- •3) Разновидности тиристоров.
- •1) Обратное смещение р-n перехода.
- •2) Статические характеристики транзистора с общим эмиттером.
- •3) Источники света. Светодиод.
- •1) Вольтамперная характеристика p-n перехода
- •2) Особенности схемы с общим эмиттером
- •3) Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1) Стабилитрон, вах, схема включения.
- •2) Схема включения транзистора с общим коллектором, параметры.
- •3) Фотодиод в генераторном режиме
- •1) Емкости р-n перехода
- •1) Пробой р-n перехода
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3) Классификация интегральных схем
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •Приборы с зарядовой связью.
- •Варикап.
- •Дрейфовый транзистор.
- •Схемы ттл - транзисторно-транзисторной логики
- •Диод Шоттки.
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •Основные характеристики полевых транзисторов.
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •23 Билет
- •Отличия вах выпрямительного диода от вах р-п-перехода.
- •Основные параметры полевых транзисторов.
- •Пленочные ис.
- •24 Билет
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Принцип действия базовой схемы эсл
- •1. Прямое смещение р-n перехода.
- •2. Схема включения транзистора с общим эмиттером, параметры.
- •3. Разновидности тиристоров.
- •1. Обратное смещение р-n перехода.
- •2. Статические характеристики транзистора с общим эмиттером.
- •3. Источники света. Светодиод.
- •Вольтамперная характеристика р-n перехода.
- •Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1. Стабилитрон, вах, схема включения.
- •2. Схема включения транзистора с общим коллектором, параметры
- •3. Фотодиод в генераторном режиме.
- •1. Емкости р-n перехода.
- •3. Оптроны.
- •1. Пробой р-n перехода.
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3. Классификация интегральных схем. Классификация Степень интеграции
- •Технология изготовления
- •Вид обрабатываемого сигнала
- •1. Контакт металл-полупроводник.
- •2. Схема замещения транзистора эквивалентным 4-х полюсником. Связь h-параметров с физическими.
- •3. Пленочные ис. Гибридные ис.
- •1. Выпрямительные диоды.
- •2. Основные характеристики полевых транзисторов.
- •3. Полупроводниковые ис.
- •1. Классификация диодов.
- •2. Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Совмещенные ис.
- •3)Устройства функциональной электроники
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Приборы с зарядовой связью.
- •Варикап.
- •Дрейфовый транзистор.
- •Схемы ттл - транзисторно-транзисторной логики
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •А) вольт-амперная характеристика при прямом смещении; б) конструкция туннельного диода
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •Отличия вах выпрямительного диода от вах р-п-перехода.
- •Основные параметры полевых транзисторов:
- •3)Пленочные интегральные микросхемы
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Транзисторы с управляющим p-n переходом
- •Принцип действия базовой схемы эсл
3. Пленочные ис. Гибридные ис.
Пленочные ИС имеют подложку (плату) из диэлектрика (стекло, керамика и др.). Пассивные элементы, т. Е резисторы, конденсаторы, катушки и соединения меж элементами, выполняются в виде разных пленок, нанесенных на подложку. Активные элементы (диоды, транзисторы) не делаются пленочными, так как не удалось добиться их хорошего свойства. Таковым образом, пленочные ИС содержат лишь пассивные элементы и представляют собой ДС-цепи либо какие-или остальные схемы.
Принято различать ИС тонкопленочные, у которых толщина пленок не более 2 мкм, и толстопленочные, у которых толщина пленок существенно больше. Разница меж этими ИС заключается не столько в толщине пленок, сколько в различной технологии их нанесения.
Гибридные ИС обширное распространение получили гибридные ИС – интегральные схемы, в которых используются плёночные пассивные элементы и навесные элементы
(резисторы, конденсаторы, диоды, оптроны, транзисторы), называемые компонентами ГИС. Электрические связи меж элементами и компонентами осуществляются с помощью плёночного либо проволочного монтажа.
Реализация функциональных частей в виде ГИС экономически целесообразна при выпуске малыми сериями специализированных вычислительных устройств и другой аппаратуры. Больших требований к точности частей в ТЗ нет. Условия эксплуатации изделия обычные.
Навесными элементами в микроэлектронике называют миниатюрные, традиционно бескорпусные диоды и транзисторы, представляющие собой самостоятельные элементы. Время от времени в гибридных ИС навесными могут быть и некие пассивные элементы, к примеру, миниатюрные конденсаторы с таковой большой емкостью, что их нереально выполнить в виде пленок.
Билет № 38
1. Выпрямительные диоды.
Выпрями́тельные дио́ды — диоды, предназначенные для преобразования переменного тока в постоянный. На сменуэлектровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований.
Основные параметры выпрямительных диодов:
среднее прямое напряжение Uпр.ср. при указанном токе Iпр.ср.;
средний обратный ток Iобр.ср. при заданных значениях обратного напряжения Uобр и температуры;
допустимое амплитудное значение обратного напряжения Uобр.макс.;
средний прямой ток Iпр.ср.;
частота без снижения режимов.
Для повышения коэффициента полезного действия выпрямительные диоды включают по мостовой (реже полумостовой) схеме, чтобы питание нагрузки осуществлялось на протяжении обоих полупериодов.
2. Основные характеристики полевых транзисторов.
К основным характеристикам полевых транзисторов относятся:
· стокозатворная характеристика – это зависимость тока стока IС от напряжения на затворе UЗИ (рис. 2.4, а);
· стоковая характеристика – это зависимость IС от UСИ при постоянном напряжении на затворе (рис. 2.4, б)
IС = f (UСИ), при UЗИ = const.
Рис. 2.4. Характеристики полевых транзисторов с управляющим p-n переходом:а – стокозатворная (входная); б – стоковая (выходная)
Основные параметры полевых транзисторов:
· напряжение отсечки;
· крутизна стокозатворной характеристики. Она показывает, на сколько миллиампер изменится ток стока при изменении напряжения на затворе на 1 В (рис. 2.4, а)
QUOTE S=∆Ic∆Uзи
,
при UСИ = const,
;
· внутреннее (или выходное) сопротивление полевого транзистора (рис. 2.4, б)
,
при UЗИ = const;
· входное сопротивление
.