Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1. Кариес зубов Лечение кариеса и пломбирование...doc
Скачиваний:
7
Добавлен:
01.05.2025
Размер:
3.24 Mб
Скачать

3.2. Классификация стоматологических цементов

Цементы – это большая группа материалов, основными из которых являются фосфатный, силикатный, поликарбоксилатный и стеклоиономерный.

I.    Фосфатные

1. цинк-фосфатные 2. силикатные 3. силикофосфатные

II.    Фенолятные

1. цинк-эвгенольные

а)    полимерные б)    содержащие ЕВА (ортоэтоксибензойную кислоту) в)    глиноземные

2.    гидроокиськальций-салицилатные

III.    Поликарбоксилатные

1.  цинк-поликарбоксилатные 2.  стеклоиономерные

IV. Акрилатные

1.  полиметилакрилатные 2.  диметилакрилатные

а) наполненные б) без наполнителя

Фосфатные цементы. Порошок, 75 - 90% которого составляют оксид цинка (II) с добавлением оксида магния (II), оксида кремния (II), оксида алюминия (II) и жидкость, представляющая собой водный раствор ортофосфорной кислоты. Фосфат-цемент применяется для пломбирования кариозных полостей молочных зубов, если до выпадения остается не более 10 мес., а также постоянных зубов, которые в будущем будут покрыты искусственной коронкой. Также применяется для фиксации искусственных коронок.

Силикатный цемент. Отличается от фосфатного составом порошка, в который входят оксид кремния (до 47%) и оксид алюминия (III) (до 35%). Ранее применявшиеся силицин и силидонт к применению не рекомендуются из-за плохой прилипаемости к тканям зуба и высокой токсичности для пульпы.

Поликарбоксилатный цемент. Порошок состоит из специально обработаного оксида цинка (III) с добавлением магния, а жидкость - водный раствор полиакриловой кислоты. Этот цемент способен химически связываться с эмалью и дентином. Он полностью безвреден.       Стеклоиономерный цемент. Порошок представляет собой алюмосиликатное стекло с определенным соотношением кремний : алюминий и фтор : алюминий. Жидкостью для цемента может быть дистилированная вода или водный раствор полиакриловой кислоты. Стеклоиономерный цемент абсолютно безвреден для пульпы и способен химически связываться с дентином.

Стеклоиономерные цементы бывают химического и светового отверждения. Они применяются для пломбирования кариозных полостей III и V классов, клиновидных дефектов и эрозий постоянных зубов.

4. Стеклоиономерные (полиалкенатные) цементы (сиц)

Стеклоиономерные цементы – целый класс современных стоматологических материалов, созданных путем объединения  свойств силикатных и полиакриловых систем. Стеклоиономерные цементы постепенно вытесняют из стоматологической практики цинк-фосфатные и цинк-поликарбоксилатные цементы.  

Официальное название СИЦ, согласно ISO, — стеклополиал-кеноатные цементы, что указывает на их состав: кальцийфтора-люмосиликатное стекло (оксид кремния, оксид алюминия, фторид кальция, фосфат алюминия, соединение фторида натрия и алюминия) смешиваемое с полиакриловой кислотой. Для рентгеноконтрастности добавляют оксид цинка, бариевое стекло, стронций.

4.1. Предпосылки создания стеклоиономерных цементов

Эра стоматологических цементов началась в первой по­ловине XIX века (конечно, если первыми материалами это­го класса не считать цементоподобную массу на основе фосфата кальция, с помощью которой древние майя еще в IX веке фиксировали вкладки из драгоценных камней в зу­бах со специально высверленными полостями) Термин "цемент" с самого начала обозначал не состав, а предназ­начение данного вещества как строительного материала. латинское слово caementum обозначает щебень, битый ка­мень Поэтому бытующее определение стоматологических цементов как материалов, состоящих из порошка и жидко­сти, которые смешиваются до образования пластической массы, отвердевающей до прочного состояния, характери­зует их довольно неопределенно

История стоматологических цементов начинается с со­здания в 1832 г Ostermann первого фосфатного цемента, порошок которого содержал оксид кальция, а жидкость — фосфорную кислоту В1858г Feichtinger предложил ис­пользовать в качестве пломбировочного материала смесь оксида цинка и хлористого цинка Для увеличения прочно­сти цемента к нему добавляли стеклянный порошок или кремниевую кислоту Однако со времени появления в 1880 г (Ward) цинк-фосфатного цемента, образующегося при смешивании порошка, содержащего 81 % оксида цинка и 19% алюмосиликата, и водного раствора фосфорной кис­лоты, содержащего натрия фосфат, цинкоксихлориды были практически полностью вытеснены последним

Традиционное применение стекла для пломбирования зубов в конце XIX века проявилось в разработке силикат­ного цемента, порошок которого представлял собой тонко измельченное кислоторастворимое стекло, состоящее из оксида кремния, алюмосиликатов, фтористых соединений и пигментов, а жидкость — водный раствор фосфорной кислоты. Позже было высказано предположение, что вы­сокое (до 15%) содержание фтористых соединений может придавать данному материалу антикариозные свойства.

Отвердевание цинк-фосфатного цемента происходит путем реакции оксида цинка с фосфорной кислотой с обра­зованием фосфата цинка. Таким образом, отвердевший цемент представляет собой сцементированные зерна, ядра которых состоят из непрореагировавшего оксида цинка (и других оксидов, входящих в рецептуру), а оболочка-матри­ца — из фосфата цинка. Наиболее существенными недо­статками фосфатных цементов являются отсутствие истин­ной адгезии к тканям зуба, высокая начальная кислотность, представляющая собой потенциальную угрозу для пульпы, низкая прочность, неудовлетворительные эстетические качества.

В основе затвердевания силикатных цементов лежит реакция взаимодействия фосфорной кислоты с диоксидом кремния. Кислота реагирует с поверхностью стеклянных частиц, в результате чего образуется кремниевая кислота. По достижении определенной кислотности начинается про­цесс конденсации ее молекул с выделением воды. В резуль­тате конденсации образуются линейные макромолекулы, обрамленные боковыми гидроксильными группами. За счет взаимодействия этих гидроксильных групп между линей­ными макромолекулами возникают поперечные связи (сшивки), и образуется минеральный полимер сетчатой структуры — силикагель. Таким образом, в результате вза­имодействия фосфорной кислоты с поверхностью стеклян­ных частиц образуется силикагель и аморфные нераство­римые фосфаты и фториды (результат взаимодействия фос­форной кислоты с соединениями металлов, содержащими­ся в стекле). Затвердевший цемент состоит из непрореаги­ровавших частичек, покрытых слоем силикагеля, вкраплен­ных в непрерывную аморфную фазу, состоящую из фосфа­тов и фторидов. Межфазный слой силикагеля играет роль связующего, образуя соединение с поверхностью непроре­агировавшей частицы связями Si-0 и А1-0 и водородными связями — с матрицей.

Предпосылки создания стеклоиономерных цементов

Наиболее существенными недостатками силикатных цементов являются токсичность в отношении пульпы зуба из-за высокой начальной медленно снижающейся кислот­ности, низкая прочность на изгиб, относительно высокая растворимость в условиях полости рта, отсутствие адгезии к тканям зуба.

Стремление создать пломбировочные материалы улуч­шенного качества, которые обладали бы манипуляционны-ми свойствами и прочностью фосфатных и силикатных це­ментов и проявляли адгезию к тканям зуба, привело к со­зданию в конце 60-х годов XX века поликарбоксилатных цементов. Порошок этих материалов состоял из оксида цин­ка с добавлением оксидов, гидроксидов и солей других ме­таллов, а жидкость представляла собой 30-50% вязкий водный раствор полиакриловой (диоксиполикарбоновой) кислоты (рис. 1). Выбор именно полиакриловой кислоты был обусловлен ее способностью растворяться в воде, сшивать­ся поливалентными катионами металлов и образовывать хелатные (клещевидные) соединения.

Затвердевание поликарбоксилатных цементов обуслов­лено сшивкой линейных макромолекул полиакриловой

Рис. 1. Формулы акриловои кислоты (а) и продукта ее полимеризации — полиакриловой кислоты (б)

кислоты поливалентными катионами металлов (из кото­рых наиболее высокими сшивающими способностями об­ладает кальций) с образованием пространственно-сетча­той структуры. Карбоксилатные группы в макромолекуле полиакриловой кислоты способны образовывать также хе­латные соединения с кальцием и другими металлами, об­ладающими определенной химической активностью. Поэтому, если формовочную массу цемента поместить на поверхность субстрата, имеющего в своем составе, напри­мер, кальций, то возникает хелатная связь с поверхнос­тью субстрата. Образование хелатных связей с кальцием гидроксиапатита, а также способность полиакриловой кислоты создавать комплексы и, возможно, реагировать с протеином дентина обеспечивают адгезию к эмали и ден­тину зуба. Таким образом, поликарбоксилатные цементы были первыми пломбировочными материалами, обладаю­щими истинной адгезией к зубным тканям. Однако их ис­пользование ограничивали низкая прочность и неудовлет­ворительные эстетические качества.

Дальнейшие поиски привели к появлению нового клас­са цементов, впервые описанных Alan D.Wilson и Brian E. Kent (1971), которые стали естественным продолжением разработки цинк-поликарбоксилатных цементов. Преимущество нового материала заключалось в замене порошка на основе оксида цинка тонко измельченным фторалюмо-силикатным стеклом. Новые материалы, объединившие таким образом в себе адгезивные свойства цинк-поликар­боксилатных цементов с содержанием фтора и удовлет­ворительными эстетическими свойствами силикатных це­ментов, получили название стеклоиономерных или (стек-ло)полиалкеноатных цементов.

Авторы некоторых классификаций (С. Smith, 1996) не выделяют стеклоиономерные цементы в отдельную груп­пу, а относят их наряду с цинк-поликарбоксилатными к груп­пе поликарбоксилатных.

Первый коммерческий стеклоиономерный цемент ASPA-IV (алюмосиликатный полиакриловый) был разработан A.D. Wilson и В.Е. Kent (1971) и выпущен в начале 70-х годов в США компанией De Trey. С этого времени стекло-иономеры начали рассматриваться как потенциальная за­мена силикатным цементам, которые были распростране­ны в течение почти 80 лет и затем стали вытесняться ком­позитными материалами.