
- •Розділ 1 роль наукових дослщжень у розвитку технічних систем
- •1.1. Роль науки в розвитку промислового виробництва
- •Структура прикладного наукового дослідження
- •1. Етапи прикладного дослідження
- •2. Визначення напряму дослідження
- •3. Конкретизація умов наукового дослідження
- •Технічна система як об'єкт наукового дослідження та проектування
- •1. Системний опис об'єкта дослідження та проектування
- •2. Формалізація опису стану технічної системи
- •3. Функція технічної системи
- •Моделювання технічної системи
- •1. Побудова моделі без вивчення структури об'єкта (об'єкт-"чорна скринька").
- •2. Моделі, побудовані з декількох елементів
- •3. Моделі, побудовані з багатьох елементів
- •1.5. Проектування технічних систем
- •1.5.1.Основні принципи проектування технічних систем
- •1.5.2.Функціональне та технічне проектування
- •Функціональний опис катодно-підігрівного вузла
- •Функціонально-елементні зв'язки катодного вузла
- •Розділ 2 технологічна система як об’єкт дослідження та проектування
- •2.1. Проблеми дослідження та проектування технологічних систем
- •2.2. Поняття технологічної системи
- •2.3. Особливості моделювання технологічної системи
- •2.4. Надійність і продуктивність технологічних систем
- •2.4.1. Надійність. Основні визначення
- •2.4.2. Показники безвідмовності технологічної системи
- •2.4.3. Комплексні показники надійності відновлюваних об'єктів
- •2.4.4. Продуктивність технологічної системи
- •2.5. Зв'язок показників надійності із функціональною точністю технологічної системи
- •2.5.1. Показники функціональної точності
- •Характеристика точності технологічної системи
- •2.5.2. Зв'язок показників безвідмовності із функціональною точністю
- •2.5.3. Моделі чисельних оцінок показників безвідмовності
- •2.6. Розрахунок надійності та продуктивності технологічних систем
- •2.6.1. Коефіцієнт готовності
- •2.6.2. Коефіцієнт готовності при стійких відмовах і збоях
- •2.6.3. Коефіцієнт готовності при технологічних і транспортних відмовах та збоях
- •2.6.4. Коефіцієнт використання гнучкої технологічної системи
- •2.6.5. Коефіцієнт використання багатоверстатної технологічної системи із врахуванням втрат часу на обслуговування
2.4.2. Показники безвідмовності технологічної системи
Показники безвідмовності відновлюваних об'єктів, до яких належать технологічні системи, ґрунтуються на понятті наробки між відмовами. Наробка між відмовами t1, t2, ... (рис. 2.6) визначається як наробка об'єкта від закінчення відновлення його працездатного стану після відмови до виникнення наступної відмови.
Ймовірність безвідмовної роботи P(ti) - це ймовірність того, що упродовж заданої тривалості функціонування ti відмова об'єкта не виникне. Вона пов'язана з імовірністю виникнення відмови F(ti) наступним чином:
|
Ймовірність відмови F(ti) визначається як ймовірність того, що об'єкт відмовить хоча б один раз упродовж заданого часу функціонування ti, якщо він був працездатний у початковий момент часу.
Середня наробка на відмову mt — це відношення наробки відновлюваного об'єкта до математичного сподівання числа його відмов п у процесі цієї наробки. Середня наробка на відмову визначає наробку відновлюваного об'єкта, що припадає в середньому на одну відмову при певній тривалості експлуатації. Вона визначається як
|
Параметр
потоку відмов
—
це відношення середнього числа відмов
відновлюваного об'єкта за довільно малу
його наробку до значення цієї наробки.
Оскільки для
відновлюваного об'єкта моменти відмов
на осі часу (без урахування часу
відновлення) утворюють потік відмов,
то характеристикою цього потоку буде
провідна функція
,
яка визначає математичне сподівання
числа відмов за час
|
де
—
число відмов за час
.
Тоді параметр
потоку відмов
характеризуватиме середню кількість
відмов у малому інтервалі часу
|
Залежно від властивостей потоку відмов вираз для параметра може бути спрощений. Це буде у випадку, якщо потік відмов матиме властивості стаціонарності, ординарності та відсутності післядії.
Ординарним називається потік подій, для якого ймовірність потрапляння на малий інтервал часу двох або більше подій є величиною, якою нехтуємо стосовно ймовірності потрапляння однієї події.
Потік без післядії передбачає перебіг подій незалежно одна від одної.
Стаціонарним
називається
потік, у якому ймовірність надходження
того чи іншого числа подій протягом
певного інтервалу часу
залежить
від тривалості цього інтервалу і не
залежить від його положення на осі часу.
Для стаціонарного
потоку подій
,
а провідна функція
|
Потік,
який має властивості ординарності,
відсутності післядії та стаціонарності,
називають найпростішим,
або
однорідним
пуасонівським. Якщо
розподіл часу між відмовами в такому
потоці є експоненцій-ним, то параметр
потоку відмов it' відповідатиме
інтенсивності відмов
,
тобто
|
Інтенсивність відмов — це умовна кількість ймовірності відмови невідновлюваного об'єкта, що визначається для даного моменту часу за умови, що до цього моменту відмова не виникла.
2.4.3. Комплексні показники надійності відновлюваних об'єктів
Вони визначають деякі характеристики надійності. Для технологічних систем найбільш широко використовуються комплексні показники надійності, які характеризують їх безвідмовність та ремонтопридатність.
Розглянемо
показники ремонтопридатності: ймовірність
відновлення працездатного стану за
час
та
середній
час відновлення
,
що визначається як (див.
рис. 2.6):
|
До
комплексних показників надійності, які
характеризують безвідмовність та
ремонтопридатність технологічних
систем, належить, передусім, коефіцієнт
готовності
,
який визначає ймовірність
того, що технологічна система буде в
працездатному стані у довільний момент
часу, окрім запланованих періодів, під
час яких її використання за призначенням
не передбачено,
|
де
—
середня наробка на відмову та середній
час відновлення технологічної системи.
Оскільки
коефіцієнт готовності є характеристикою
усталеної роботи технологічної
системи, то його значення не залежить
від законів розподілу випадкових величин
та
.
Тоді
інтенсивності потоку відмов та потоку
відновлень
можуть бути визначені як
|
Якщо
позначити завантаженість технологічної
системи відновлювальними роботами
через
,
то вираз для визначення коефіцієнта
готовності набуде вигляду
|
Величина,
обернена до коефіцієнта готовності,
називається коефіцієнтом простоювання
,
який визначається як
|
Якщо
врахувати, що в реальних умовах
функціонування технологічних систем
,
то
При
визначенні коефіцієнта готовності не
беруться до уваги періоди часу, коли
об'єкт зайнятий плановим технічним
обслуговуванням. Ці періоди часу
враховуються за допомогою іншого
показника функціонування технологічної
системи — коефіцієнта
технічного використання
,
який визначається відношенням
математичного сподівання інтервалів
часу, коли технологічна система була у
працездатному стані за деякий період
експлуатації, до суми математичних
сподівань інтервалів часу перебування
технологічної системи в працездатному
стані
,
простоювань,
зумовлених технічним обслуговуванням
та ремонтом
за цей же період експлуатації, тобто
|
де
— сумарний час технічного обслуговування
за заданий період експлуатації.