
- •Дифракция света. Метод зон Френеля. Дифракция на щели и нити. Дифракционная решетка. Условие максимумов и минимумов. Разрешающая способность дифракционной решетки.
- •Геометрическая оптика, ее модели. Основные законы геометрической оптики. Отражение, преломление, поглощение, рассеяние. Закон сохранения энергии в оптике.
- •Дифракция рентгеновских лучей. Формула Вульфа-Бреггов. Рентгенография.
- •Волновая оптика. Электромагнитная природа световых волн. Оптический диапазон спектра. Длина световых волн в среде с данным показателем преломления.
- •Стационарное уравнение Шрёдингера. Решение для одномерной потенциальной ямы.
- •2. Линейный гармонический осциллятор в квантовой механике.
- •Интерференция света в тонких пленках (плоскопараллельных и клиновидных). Полосы равного наклона и равной толщины.
- •Поляризация при отражении и преломлении. Диаграмма направленности излучения электрического диполя. Закон Брюстера. Оптические явления в кристаллах. Поляризаторы
- •Кольца Ньютона. Интерференция при большой разности хода, отражение от толстой плоскопараллельной пластинки.
- •Волновая функция и ее статистический смысл. Плотность вероятности. Условие нормировки.
- •Интерференция света в тонких пленках. Условие максимумов и минимумов. Полосы равной толщины и полосы равного наклона.
- •Фотоэффект. Законы Столетова. Формула Эйнштейна. Красная граница фотоэффекта.
- •Применения интерференции. Интерферометры. Исследования поверхностей, зеркальная оптика, интерференционные фильтры.
- •Тепловое электромагнитное излучение. Закон Кирхгофа. Законы Стефана-Больцмана и Релея-Джинса. Закон Вина. Формула Планка для равновесного распределения фотонов.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция на щели и нити. Зонная пластинка.
- •2. Оптическая пирометрия. Законы Стефана-Больцмана и Релея-Джинса. Закон Вина. Формула Планка для равновесного распределения фотонов. Радиационная, цветовая и яркостная температура.
- •Метод зон Френеля. Дифракция Френеля на круглом отверстии и на диске. Пятно Пуассона.
- •Квантовые проявления света. Импульс фотона, эффект Комптона, длина волны рассеянного фотона, давление света.
- •Дифракция Фраунгофера на одной щели. Главные и вторичные максимумы. Условия минимумов и максимумов. Влияние ширины щели на дифракционную картину. Дифракция на дифракционной решетке
- •Дифракция Фраунгофера от двух щелей. Дифракция на трех, … n-щелях. Дифракционная решетка, условия максимумов и минимумов. Дифракция в монохроматическом и белом свете.
- •Дифракционная решетка как спектральный прибор. Постоянная решетки, разрешающая способность дифракционной решетки, порядок спектра. Правило Релея. Линейная и угловая дисперсия.
- •Волновая функция. Уравнение Шредингера для стационарных состояний. Собственные функции и собственные значения уравнения Шредингера.
- •Законы теплового излучения. Закон Кирхгофа, закон Стефана-Больцмана, Формула Рэлея-Джинса, закон смещения Вина, формула Планка.
- •Дифракционная решетка как спектральный прибор. Постоянная решетки, разрешающая способность дифракционной решетки, порядок спектра. Правило Релея. Линейная и угловая дисперсия.
- •Элементарные частицы. Их характеристики и классификация. Фермионы и бозоны, стандартная модель
- •Дифракция рентгеновских лучей. Формула Вульфа-Бреггов. Рентгенография.
- •Поляризация света. Естественный и линейно поляризованый свет. Уравнение эллипса. Эллиптически и циркулярно-поляризованый свет.
Дифракционная решетка как спектральный прибор. Постоянная решетки, разрешающая способность дифракционной решетки, порядок спектра. Правило Релея. Линейная и угловая дисперсия.
Дифркционая решетка – оптический прибор, совокупность регулярно расположенных препятствий. Ее постоянная – ее период (d = a+b, d = 1/N) Разрешающая способность дифракционной решётки определяется безразмерной величиной где - минимальная разность длин волн спектральных составляющих источника излучения, при которых эти составляющие ещё воспринимаются раздельно.
Правило Релея: спектральные линии с разными длинами волн, но одинаковой интенсивности, считаются разрешёнными, если главный максимум одной спектральной линии совпадает с первым минимумом другой. Угловая дисперсия дифракционной решетки: ,где δ. - угловое расстояние между двумя спектральными
линиями с разностью длин волн δλ, - угол дифракции, k=1,2,3... • Линейная дисперсия дифракционной решетки: - где δl - линейное расстояние между двумя спектральными линиями с разностью длин волн δλ.
Билет 17
Элементарные частицы. Их характеристики и классификация. Фермионы и бозоны, стандартная модель
В настоящее время известно более 350 элементарных частиц, у большинства из которых, кроме фотона и лептонов, обнаружена внутренняя структура.
Анализ свойств частиц показал, что существует четыре типа фундаментальных взаимодействий:
сильное, электромагнитное, слабое и гравитационное.
Среди известных частиц особенно стабильны:
протон, фотон, электрон, позитрон, антипротон, электронное нейтрино,-мюонное нейтрино и тау–нейтрино и их античастицы.
Остальные частицы либо нестабильны, либо являются резонансами.
В зависимости от принадлежности элементарных частиц к фермионам или бозонам
Первая группа состоит только из одной частицы - фотона, которая является бозоном (спин S = 1) и совсем не участвует в сильных взаимодействиях.
Во вторую группу входят лептоны, которые также не участвуют в сильных взаимодействиях. Все они являются фермионами с полуцелым спином. Известно 12 лептонов:
электрон, мюон, – лептон, нейтрино: – электронное (е), мюонное (,),
–нейтрино () и их античастицы.
Третью группу составляют мезоны.
Они являются бозонами и участвуют в сильных взаимодействиях.
Четвертую группу образуют барионы, которые участвуют в сильных взаимодействиях и являются фермионами.
Станда́ртная моде́ль в физике элементарных частиц — теоретическая конструкция, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Гравитацию Стандартная модель не включает.
Стандартная модель состоит из следующих положений.
Всё вещество состоит из 12 фундаментальных частиц-фермионов: 6 лептонов (электрон, мюон, тау-лептон, и три сорта нейтрино) и 6 кварков (u, d, s, c, b, t), которые можно объединить в три поколения фермионов.
Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряженные лептоны (электрон, мюон, тау-лептон) — в слабых и электромагнитных; нейтрино — только в слабых взаимодействиях.
Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований. Частицами-переносчиками взаимодействий являются:
8 глюонов для сильного взаимодействия (группа симметрии SU(3))
3 тяжелых калибровочных бозона (W+, W−, Z0) для слабого взаимодействия (группа симметрии SU(2))
один фотон для электромагнитного взаимодействия (группа симметрии U(1)).
В отличие от электромагнитного и сильного, слабое взаимодействие может смешивать фермионы из разных поколений, что приводит к нестабильности всех частиц, за исключением легчайших, и к таким эффектам, как CP-нарушение и нейтринные осцилляции.
До сих пор все предсказания Стандартной модели подтверждались экспериментом, иногда с фантастической точностью в миллионные доли процента
. Только в последние годы стали появляться результаты, в которых предсказания Стандартной модели слегка расходятся с экспериментом (Последние достижения в физике элементарных частиц). С другой стороны, очевидно, что Стандартная модель не может являться последним словом в ФЭЧ, ибо она содержит слишком много внешних параметров, а также не включает гравитацию. Поэтому поиск отклонений от Стандартной модели — одно из самых активных направлений исследования в последние годы. Ожидается, что эксперименты на коллайдере LHC смогут зарегистрировать множество отклонений от Стандартной модели.