Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЕЛЕМЕНТИ ДИСПЕРСІЙНОГО АНАЛІЗУ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
687.1 Кб
Скачать

2.4 Визначення параметрів вибіркового рівняння прямої лінії середньоквадратичної регресії за незгрупованих даних

Нехай під час дослідження кількісних ознак ( , ) у результаті незалежних випробувань отримано пар чисел: , ,..., . Будемо шукати функцію в лінійному наближенні (все аналогічно проводиться і для функції у випадку регресії на ). Крім того, у припущенні незгрупованих даних спостережень (різні значення ознаки і відповідні їм значення ознаки спостерігалися по одному разу) і можна замінити на і . Під час цього рівняння прямої лінії регресії на можна подати у вигляді

(16)

Кутовий коефіцієнт прямої (16) називається вибірковим коефіцієнтом регресії на і позначається . Він є оцінкою коефіцієнта регресії в рівнянні (10). Тепер рівняння (16) можна переписати

(17)

Підберемо параметри і так, щоб сума квадратів відхилень прямої (17) від точок , ,..., , побудованих за даними спостережень, була б мінімальною

(18)

де

– ордината, що спостерігається, і є відповідною до ,

– ордината точки, що лежить на прямій (17) і має абсцису ,

.

Підставивши значення з рівняння (17) у формулу (18), одержимо

(19)

Дорівнявши нулю частинні похідні і функції (19) одержимо систему двох лінійних алгебраїчних рівнянь щодо параметрів і для знаходження точки її мінімуму

(20)

де

, , ,

звідкіля остаточно знаходимо

Аналогічно визначається вибіркове рівняння прямої лінії регресії на .

2.5 Знаходження параметрів вибіркового рівняння прямої лінії середньоквадратичної регресії за згрупованими даними

При великій кількості спостережень одне й те ж саме значення може зустрітися раз, значення – раз, одна й та ж пара чисел може спостерігатися раз. Тому дані спостережень групують, тобто підраховують відповідні частоти , , . Усі згруповані дані записують у вигляді таблиці, що називають кореляційною.

Приклад такої таблиці приведено нижче (табл. 3).

Таблиця 3

10

20

30

40

0,4

5

7

14

26

0,6

2

6

4

12

0,8

3

19

22

8

21

13

18

У першому рядку цієї таблиці дано перелік значень (10; 20; 30; 40) ознаки , що спостерігаються, а в першому стовпці – спостерігаємі значення (0,4; 0,6; 0,8) ознаки . На перетинанні рядків і стовпчиків знаходяться частоти пар значень ознак. Наприклад, частота 5 вказує, що пара чисел (10; 0,4) спостерігається 5 разів. Риска означає, що відповідна пара чисел, наприклад (20; 0,4), не спостерігається.

В останньому стовпчикові записані суми частот рядків. В останньому рядку записані суми частот стовпчиків. У нижньому правому куті таблиці, поміщена сума всіх частот (загальна кількість всіх спостережень ).

У випадку згрупованих даних з урахуванням очевидних співвідношень

, , ,

систему рівнянь (20) можна переписати у виправленому вигляді

З рішення цієї системи ( , ) знаходимо рівняння прямої регресії

Шляхом нескладних перетворень його можна переписати у вигляді

де , – вибіркові середні квадратичні відхилення величин і

(21)

– вибірковий коефіцієнт кореляції.

Вибірковий коефіцієнт кореляції. Як відомо з теорії ймовірностей, якщо величини і незалежні, коефіцієнт їхньої кореляції , якщо – величини і пов'язані лінійною функціональною залежністю. Тобто коефіцієнт кореляції характеризує ступінь лінійного зв'язку між і .

Вибірковий коефіцієнт кореляції є оцінкою коефіцієнта кореляції генеральної сукупності, тому він також характеризує міру лінійного зв'язку між величинами і .