Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6,Визначений інтеграл.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.66 Mб
Скачать

Задачі, що приводять до поняття визначеного інтеграла

Означення. Криволінійною трапецією називається плоска фігура, що обмежена лініями:

На рис. 7.3. зображені: класична криволінійна трапеція (а) та її вироджені випадки (б) та (в).

Рис. 7.3

Задача. Обчислити площу криволінійної трапеції аАВв (рис. 7.4).

Розв’язання.

Розіб’ємо проміжок [a; b] на n частин точками так що Виберемо точки так: Побудуємо прямокутники з основою і висотою (рис. 7.4).

Площа елементарного прямокутника . Площа ступінчастої фігури буде тим менше відрізнятись від площі криволінійної трапеції SaABb, чим менша довжина , а в граничному випадку ці площі будуть збігатися, тобто

Рис. 7.4

Задача. Обчислити роботу змінної сили що виконується при переміщенні матеріальної точки на проміжку (рис. 7.5).

Розв’язання.

Розіб’ємо проміжок [a; b] на n частин точками На кожному з відрізків вважатимемо, що сила стала і дорівнює , (рис. 7.5).

Рис. 7.5

Елементарна робота сили на відрізку буде Робота А сили на відрізку [a; b] знайдеться тоді так:

Означення. Сума типу називається інтегральною сумою.

Оперувати поняттям інтегральної суми доводиться у процесі розв’язку різних задач. Взагалі інтегральна сума може залежати від способу розбиття проміжка [a; b] на частини , а також від вибору на них точок

Поняття визначеного інтеграла

Нехай — деяка функція, що задана на проміжку [a; b]. Розіб’ємо [a; b] на n частин точками так що

Обчислимо де

Складемо інтегральну суму .

Позначимо .

Означення. Якщо існує скінченна границя інтегральних сум Sn при і не залежить ні від способу розбиття [a; b] на частини , ні від вибору точок , то ця границя називається визначеним інтегралом від функції на проміжку [a; b] і позначається:

, (7.8)

де — знак визначеного інтеграла;

а, b — нижня та верхня межі інтегрування;

f(x) — підінтегральна функція;

f(x) dx — підінтегральний вираз;

dx — диференціал змінної інтегрування.

За означенням, визначений інтеграл — число, яке залежить від типу функції та проміжку [a; b]; він не залежить від того, якою буквою позначена змінна інтегрування:

Означення. Функція, для якої на [a; b] існує визначений інтеграл називається інтегровною на цьому проміжку.

Далі буде показано, що неперервні функції — інтегровні.

Геометричний зміст визначеного інтеграла

Якщо , то дорівнює площі відповідної криволінійної трапеції (рис. 7.4).

7.2.3. Властивості визначеного інтеграла

І. Якщо , то

ІІ. Сталий множник можна виносити з-під знака визначеного інтеграла, тобто

ІІІ. Якщо та інтегровні на [a; b], то

IV. Якщо у визначеному інтегралі поміняти місцями межі інтегрування, то інтеграл змінить лише свій знак на протилежний, тобто

V. Визначений інтеграл з однаковими межами інтегрування дорівнює нулю

VI. Якщо — інтегровна в будь-якому із проміжків: [a; b], [ac], [с; b], то

VII. Якщо і інтегровна для то

VIII. Якщо , — інтегровні та для то

IX. Якщо f(x) — інтегровна та для то

Доведення випливає як наслідок із властивостей І та VIII.

Х. Теорема 7 (про середнє).

Якщо функція — неперервна для то знайдеться така точка що:

(7.9)

Геометричний зміст теореми про середнє полягає в тому, що існує прямокутник із сторонами та b – a, який рівновеликий криволінійній трапеції аАВв за умови, що функція та неперервна на проміжку [a; b] (рис. 7.6).

Рис. 7.6.

Поняття визначеного інтеграла зі змінною верхньою межею інтегрування, формула Ньютона—Лейбніца

Розглянемо інтеграл , який буде функцією від верхньої межі інтегрування. Змінній х надамо приросту , що зумовить приріст функції.

(рис. 7.7)

Рис. 7.7

Теорема 8. Якщо функція f(x) неперервна для будь-якого то похідна від інтеграла зі змінною верхньою межею інтегрування по цій межі дорівнює підінтегральній функції від верхньої межі інтегрування, тобто

(7.10)

Наслідки:

1. Визначений інтеграл зі змінною верхньою межею від функції є одна із первісних для .

2. Будь-яка неперервна функція на проміжку має на цьому проміжку первісну, яку, наприклад, завжди можна побудувати у вигляді визначеного інтеграла зі змінною верхньою межею, тобто

Приклад. Знайти .

 Функція — неперервна на проміжку тому

Теорема 9. (Ньютона—Лейбніца). Якщо функція — неперервна для то визначений інтеграл від функції на проміжку дорівнює приросту первісної функції на цьому проміжку, тобто

де (7.11)

Позначимо дію подвійної підстановки так: тоді зв’язок між визначеним та невизначеним інтегралами можна подати такою рівністю:

(7.12)

Наслідок. Для обчислення визначеного інтеграла достатньо знайти одну із первісних підінтегральних функцій і виконати над нею подвійну підстановку.

Приклад.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]