
- •В.А.Носенко, п. В. Ольштынский, с. Н. Ольштынский, м.В. Даниленко
- •Учебное пособие
- •1. Лабораторная работа № 1 Кинематика резания при точении
- •1.1. Цель работы
- •1.2. Теоретическая часть
- •1.3. Классификация резцов
- •1.4. Поверхности и координатные плоскости резца
- •1.5. Геометрические параметры режущей части резца
- •1.6. Кинематические (рабочие) углы резца
- •1.7. Методические указания по выполнению работы
- •1.8. Охрана труда и техника безопасности
- •1.9. Задание для самостоятельного выполнения работы
- •1.10. Содержание отчета
- •1.11. Контрольные вопросы
- •2.2.1. Общие сведения о пластической деформации металла в зоне резания
- •2.2.2. Понятие о процессе стружкообразования
- •А стадии деформации и отделения срезаемого слоя; б процесс образования сливной стружки
- •2.2.3. Вид и форма стружки
- •2.2.4. Усадка стружки
- •2.2.5. Влияние различных факторов на деформацию стружки
- •2.2.6. Методы определения коэффициента усадки
- •Охрана труда и техника безопасности
- •2.4. Методика проведения экспериментальных исследований и обработки результатов
- •Экспериментальные данные
- •2.5. Содержание отчета
- •2.6. Контрольные вопросы
- •3.2.1. Влияние элементов режима резания на температуру резания
- •3.2.2. Влияние физико-механических свойств на температуру резания
- •Влияние геометрических параметров инструмента
- •3.2.4. Влияние смазочно-охлаждающей жидкости на температуру резания
- •3.3. Охрана труда и техника безопасности
- •3.4. Порядок проведения эксперимента
- •3.5. Обработка экспериментальных данных
- •3.5.1. Определение показателей степени X, y, z
- •3.5.3. Определение коэффициента с общей математической модели
- •3.6. Содержание отчета
- •3.7. Контрольные вопросы
- •4. Лабораторная работа № 4 Исследование износа резца
- •4.1. Цель работы
- •4.2. Теоретическая часть
- •4.2.1. Абразивное изнашивание
- •4.2.2. Адгезионное изнашивание
- •4.2.3. Диффузионное изнашивание
- •4.2.4. Окислительное изнашивание
- •4.3. Влияние скорости резания на период стойкости инструмента
- •4.4. Влияние материала детали на стойкость инструмента
- •4.5. Охрана труда и инструкция по технике безопасности
- •4.6. Методика проведения эксперимента и обработка результатов
- •1 Окуляр микроскопа, 2 резец, 3 измерительная шкала, 4 изношенная часть резца
- •4.7. Содержание отчета
- •4.8. Контрольные вопросы
- •5.3. Теоретическая часть
- •5. 4. Методика проведения экспериментальных исследований Оборудование и аппаратура
- •5.5. Графоаналитическая обработка экспериментальных данных
- •5.6. Охрана труда и техника безопасности
- •5.7. Порядок выполнения экспериментальной части работы
- •Результаты измерения силы резания
- •5.7. Содержание отчета
- •5.9. Контрольные вопросы
- •6. Лабораторная работа № 6 Кинематика резания при сверлении
- •6.1. Цель работы
- •6.2. Конструктивные и геометрические элементы сверла
- •6.3. Методические указания по выполнению работы
- •6.3.1. Измерение конструктивных и геометрических элементов сверла
- •6.3.2. Измерение заднего угла сверла
- •6.3.3. Определение передних углов сверла
- •6.4. Охрана труда и техника безопасности
- •6.5. Задание для самостоятельного выполнения работы
- •7.3. Влияние условий обработки на шероховатость поверхности
- •7.3.1. Влияние скорости резания на шероховатость обработанной
- •7.3.2. Влияние подачи резца и глубины резания на шероховатость обработанной поверхности
- •7.3.3. Влияние геометрических параметров режущего инструмента на шероховатость обработанной поверхности
- •7.4. Нормируемые параметры шероховатости
- •Параметры шероховатости, связанные с высотными свойствами неровностей
- •2. Параметры шероховатости в направлении длины профиля
- •3. Параметры шероховатости, связанные с формой неровностей профиля
- •7.5. Приборы для измерения шероховатости поверхности
- •Технические характеристики
- •7.6. Задачи экспериментальных исследований
- •7.7. Методика выполнения лабораторной работы
- •7.8. Содержание отчета
- •Протокол исследования влияния подачи резца на среднее арифметическое отклонение профиля Ra при точении
- •7.7. Контрольные вопросы
- •8.3. Выбор режущего инструмента
- •8.3.1. Общие конструктивные элементы резцов
- •Выбор марок твердого сплава для различных видов токарной обработки
- •8.3.2. Геометрия резцов
- •Значения угла в зависимости от вида обработки
- •8.4. Методика определения режима резания при точении
- •8.5. Порядок выполнения лабораторной работы
- •8.6. Содержание отчета
- •8.7. Контрольные вопросы
- •Словарь терминов и определений
- •Список рекомендуемой литературы
Влияние геометрических параметров инструмента
на температуру резания
С изменением геометрии инструмента изменяются условия для образования и отвода тепла на зоны резания.
С увеличением переднего угла γ уменьшается сила резания, а следовательно и работа резания, а так же количество теплоты. Однако при этом ухудшаются условия ее отвода, т.к. уменьшается угол заострения β, т.е. массивность головки резца. Поэтому существует некоторый оптимальный угол γ, с увеличением значения которого ухудшаются условия теплоотвода и растет температура в зоне резания.
Аналогичное влияние на температуру резания оказывает главный задний угол α.
С уменьшением главного угла в плане φ увеличивается угол при вершине ε, что приводит к улучшению теплоотвода и, следовательно, к уменьшению температуры. С увеличением радиуса закругления при вершине резца r так же увеличивается теплоотвод, и температура резания уменьшается.
Влияние углов 1, 1, на температуру резания незначительно и имеет только принципиальное значение.
3.2.4. Влияние смазочно-охлаждающей жидкости на температуру резания
С применением СОЖ
уменьшается сила резания
и тепловыделение
,
теплоотвод увеличивается за счет
свойств охлаждающей жидкости, что
приводит к значительному уменьшению
температуры резания.
Из многочисленных факторов, изменяющих температуру резания, наиболее значительное влияние оказывает механические свойства обрабатываемого материала, СОЖ, скорость резания.
Уменьшить
температуру резания можно за счет
уменьшения
,
s,
t,
,
увеличения
и
применения СОЖ.
Температурные деформации детали снижают точность обработки. Поэтому важно знать, какие возникают температуры при разных условиях работы. Зависимости для расчёта температуры резания выводятся двумя путями: а) определяются теоретически на основе теории теплопередачи; б) определяются путем непосредственного измерения температуры при изменении условий резания.
3.2.5. Методы измерения температуры резания
Для определения температуры в зоне резания применяют косвенные и непосредственные методы измерения. К косвенным методам относятся такие, как калориметрический, метод термокрасок, метод цветов побежалости, метод измерения микротвердости, фотоэлектрический метод и др.
К непосредственным методам относятся методы измерения температуры при помощи термопар.
3.2.5.1. Метод искусственной термопары
Метод заключается в том, что в резце просверливаются отверстия малого диаметра, не доходящие до какой-либо точки передней или задней поверхности резца примерно на 0,2…0,5 мм, в которые устанавливается изолированная термопара (часто медь-константа). Температура в точке соприкосновения термопары и резца регистрируется включенным в цепь термопары гальванометром.
3.2.5.2. Метод полуискусственной термопары
Одним из элементов термопары служит сам резец, а другим является константовая проволока, протянутая через сквозное отверстие в резце и изолированная от стенок отверстия.
3.2.5.3. Метод естественной термопары
Элементами термопары служат деталь и резец, которые, будучи разнородными металлами, в процессе резания имеют сильно нагретый контакт, являющийся спаем этой термопары. Одна из распространенных схем естественной термопары приведена на рис. 3.4.
Рис. 3.4. Схема естественной термопары: 1 деталь, 2 резец, 3 прокладка, 4 центр, 5 проволока термопары, 6 милливольтметр
Заготовка 1 изолируется от станка при помощи диэлектрических прокладок. Резец 2 изолируется от резцедержателя станка при помощи прессшпановых и текстолитовых прокладок 3, которые обеспечивают надежное замыкание вращающегося и неподвижного участков цепи. Возникающая в процессе резания термоЭДС регистрируется милливольтметром 6.
Для устранения дополнительных паразитных термопар, возникающих в местах стыка деталей станка с заготовкой, резец и заготовку изолируют от станка. При исследованиях, не требующих высокой точности, установка может быть значительно упрощена. Деталь не изолируют от станка, считается, что роль возникающей дополнительной термопары ничтожна, из-за слабого разогревания заднего центра по сравнению с резцом. В связи с этим провод, ранее присоединяемый к детали, можно присоединить к любой точке станка.
Недостатком метода естественной термопары является сложность и необходимость тарирования при каждом изменении материала детали или инструмента. Естественная термопара измеряет некоторую среднюю температуру, тогда как на площадке контакта стружки и передней грани инструмента в процессе резания развивается различная температура в различных точках контакта. Отношение этой средней температуры и наивысшей непостоянно.